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Abstract

We present a discussion on recent progress in high energy diffraction from the per-
spective of AdS/CFT, through which a unified treatment for both perturbative and non-
perturbative Pomeron emerges. By working with Unitary Irreducible Representation of
Conformal group, a frame is provided in extending AdS/CFT to both forward and near-
forward scattering. We present an analysis involving an exact solution to conformal
blocks in Minkowski CFT and discuss possible applications. Phenomenological applica-
tions can range from forward scattering to DIS/DVCS/TMD at LHC energies and beyond.
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1 Introduction

Study of Conformal Field Theories (CFTs) has recently gained traction within various domains
of physics. Quantum Chromodynamics (QCD) has numerous limits where the dynamics appear
near conformal [1]. The use of conformal methods for QCD are numerous1 and prove espe-
cially useful in the high energy limit away from any relevant mass scale (e.g. [2]),and in the
strong coupling limit using holography (e.g. [3,4]). The latter example is of particular interest
where a unified description of the perturbative and non-perturbative Pomeron emerges [5].
The canonical AdS/CFT approach is formulated using Euclidean CFTs. In order to make claims
about systems like particle scattering, the results would have to be analytically continued to
Lorentzian space—and many nontrivial connections between Euclidean and Minkowski CFTs
have been found [6,7]. A direct treatment of Minkowski CFTs was done in [8], which empha-
sized the importance of Regge behavior for the associated conformal blocks. It deals with the

1We highlight here a very brief selection of a vast literature.
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study of scattering within the CFT framework where it was shown that an invariant function
over SO(d, 2) can be represented via the unitary principal series as

F(g) =
∑

m,m′

∫ i∞

−i∞

de`
2πi

∫ i∞

−i∞

d e∆
2πi

am,m′(e`, e∆)G(e`,e∆;m,m′)(g). (1)

The representation functions (or group harmonics) G∆,`(g) can be associated with the defined
Minkowski conformal blocks.

This shift from a Euclidean metric to a Minkowski one can be thought of as moving to a
different real form of the same complex extension: SO(d + 1,1) → SO(d, 2). The aim is to
provide an unitary, irreducible representation for SO(d, 2) using a convenient induced repre-
sentation. Under Iwasawa decomposition, G = KAN , [9], there is a rank 2 Maximum Abelian
Subgroup A = SO(1,1)× SO(1,1) of SO(d, 2) which carries the physics of the two indepen-
dent non-compact generators in the group. These generators are chosen to be a dilatation
and a longitudinal Lorentz boost. For CFT, the group harmonics G∆,`(g), which are purely
kinematical, are found through standard procedure via the unitarized Casimir equation using
appropriate Regge boundary conditions and are a function of the two non-compact parameters
(which will be related to the two familiar conformal cross ratios). These group harmonics are
generalized spherical functions that are obtained after integrating over the maximal compact
subgroup K = SO(d)× SO(2), thus reducing Eq. (1) to the limit of m= m′ = 0 only [10].

With applications to diffractive physics as our goal, we will start by setting up the relevant
kinematics. We will discuss how the two conformal cross ratios can be combined to make
connection with our group theoretic interpretation. After "diagonalizing" the Casimir operator,
we will state our solutions of the group harmonics for the special cases of d = 2, 4, which will
be most relevant for phenomenological applications to diffractive physics. We will conclude
with a brief discussion of these applications.

2 Kinematics

In order to discuss scattering in CFT, the process we consider is that of off-shell scattering of
four-currents2

γ?(1) + γ?(3)→ γ?(2) + γ?(4). (2)

Scattering amplitudes for such a process can be written in terms of a partial wave decompo-
sition where the dynamics are encoded in the partial wave amplitudes a(`,∆). These ampli-
tudes can in principle be found exactly in a theory with a Lagrangian. In a theory without
a Lagrangian, like our Regge treatment, a fundamental physical assumption is that of mero-
morphy. The success of a CFT treatment of QCD lies in an agreement between these two
approaches.

In this set-up, we can choose a causal structure that makes studying the t-channel OPE
most natural as follows. For the s-channel scattering process Eq. 2, points (1, 4) and (2,3) are
timelike separated3 (x2

14, x2
23 < 0) whereas all other distances are spacelike (eg. x2

13, x2
24 > 0).

Therefore, we designate our 2 → 2 scattering s-channel process as 1 + 3 → 2 + 4. The
corresponding process 1 + 2̄ → 3̄ + 4 is the t-channel and 1 + 4̄ → 2 + 3̄ is u-channel. In
terms of cross ratios: u = (x2

12 x2
34)/(x

2
13 x2

24) and v = (x2
23 x2

14)/(x
2
13 x2

24) we are restricted
to the first quadrant (u, v > 0). Since this is also the case for Euclidean CFT, it is use-
ful to consider instead the (

p
u,
p

v)4 plane such that
p

u = (
q

x2
12

q

x2
34)/(
q

x2
13

q

x2
24) and

2For illustrative purpose, we shall treat external states as conformal scalars.
3In contrast, all distances in a Euclidean setting are necessarily spacelike separated.
4The (u, v) plane has a double sheet structure that the (

p
u,
p

v) plane resolves.
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Figure 1: Moving from u, v plane to
p

u,
p

v plane, on to w,σ plane for crossing
symmetry. Here, the "Euclidean region" is where the t-channel OPE converges as
|w|< 1. This corresponds to y → i y in Eq. 3, which is essentially a Wick rotation.

p
v = (
q

x2
23

q

x2
14)/(
q

x2
13

q

x2
24).

Notice that we now cover a larger part of the (
p

u,
p

v) plane since, for the s-channel
say,
p

v < 05. We can define a set of crossing symmetric variables w,σ by requiring that
wσ = 1−v

u . For our purposes we choose6: w ≡ 1−
p

vp
u and σ ≡ 1+

p
vp

u . In order to see why this
set is interesting, we can pick a particular parameterization of our coordinate space such that
the cross ratios can be expressed in the form:

p
u=

2
cosh y +σ

,
p

v = −
cosh y −σ
cosh y +σ

, (3)

where σ = (r2
1 + r2

3 + b2)/(2r1r3) = coshξ+ b2. Here, (y,ξ) parametrize our Lorentz boost (y
is essentially rapidity) and dilatation respectively7. The cross ratios can be rewritten in terms
of w≡ cosh y , and σ ≡ coshζ= coshξ+ b2. In this frame, causal relation x2

23 = x2
14 < 0 leads

to
p

v < 0, which requires that 1 < coshζ < cosh y . For s-channel scattering, the physical
region is given by the constraint 1< σ < w<∞ .

3 Unitary Conformal Blocks

In order to construct our scattering amplitudes, what we are after is a representation of our
symmetry group SO(d, 2). This can be constructed via a direct group theoretic approach: by
starting with a d + 2 dimensional embedding space and restricting to a null sub-manifold,
we can project down to our d dimensional spacetime of interest. A representation can then
be induced by the MASG A [9]. In this work, we will focus on an equivalent approach that
doesn’t quite require the full machinery of group theory by realizing that our partial waves are
solutions to the Casimir equation8.

3.1 Unitarized Casimir Equation and Conformal Blocks

In our Minkowski setting, we are interested in the space corresponding to unitary irreducible
representation where the dilatation D and Lorentz boost Lzt are diagonal, with eigenvalues e∆
and e` respectively. For the invariant conformal scalar function of interest to us, the Casimir

5We have chosen here a "positive root" convention meaning that
q

x2
i j > 0. Similar procedure can be followed

for the u-channel to find
p

u,
p

v < 0.
6A similar choice was made in the Euclidean lattice treatment of [11].
7Notice that this is a parametrization of our MASG discussed before. See [8] for further discussion.
8A group theoretic treatment involving integrating over the maximal compact subgroup K to obtain these spher-

ical functions will be presented in [10].
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can be expressed as a differential operator in terms of (u, v)9

C = −2[(1− u− v)∂v(v∂v) + u∂u(u∂u − d)− (1+ u− v)(u∂u + v∂v)(u∂u + v∂v)]. (4)

It can be shown that the Casimir acting on the representation space of SO(d, 2), labelled by
(e`, e∆), can be brought into an explicitly Hermitian form via a Jacobian, taking on the form

eC = −∂ 2
y − ∂

2
ζ + V (y,ζ). (5)

The Jacobian can be written out explicitly and is chosen to have a simple large t = e y limit,
J ∼ t−d/2σ−(d−2)/2. With this choice, the potential also takes on a relatively simple form as a
function of (w,σ) or (y,ζ) and contains a constant term V0. After resetting the "ground state
energy" to be zero, the effective potential V vanishes in the limit w →∞, with σ fixed. It
follows that the spectrum is strictly positive and continuous. This brings us to one of our main
(expected) results:

e`, e∆→ imaginary. (6)

Solutions to (eC−V0)Ψ(y,ζ) = λΨ(y,ζ) are asymptotically plane-wave, with eigenvalues iden-
tified with eigenvalues of boost Lzt and dilatation D, (kξ to kζ), λ= k2

y + k2
ζ
≡ −e`2− e∆2. It is

instructive to compare the eigenvalue for the Casimir, λ+ V0, to that obtained under the Eu-
clidean treatment, C(`,∆) = −[∆(∆−d)+`(`+d−2)]. By continuing both ` and∆ complex,
one finds they can be identified with the corresponding Minkowski values

0< k2
y = −e`

2 = −(`+ (d − 2)/2)2, and 0< k2
ζ = −e∆

2 = −(∆− d/2)2 . (7)

That is, the analytically continued |e`| goes into eigenvalues for the Lorentz boost, Lzt , and
|e∆| into eigenvalues for the dilatation, D, in the Minkowski setting, with both e` and e∆ purely
imaginary. This is indeed our expectation10.

A notable feature of this very simple "potential" scattering form of the equation is that it
factorizes for the special cases of d = 2,4. There are two ways to write the solution to this
equation: as an infinite series of plane wave products or as a product of two hypergeometric
functions. We can write the leading behavior as:

G(M)
(e`,e∆)
(y,ζ) = J(y,ζ)G(e`,e∆)(y,ζ)∼ w−d/2σ−(d−2)/2(we`σ−e∆) = w`−1σ−∆+1 , (8)

where the right hand side is the Regge limit with the expected form [8].

3.2 Conformal Dynamics and Meromorphy in ` and ∆:

It should be stressed that much of our current study has focussed on the kinematics of uni-
tary representations for SO(d, 2). Dynamics of CFT reside in the partial-wave amplitudes
a(α)(e`, e∆). In particular, CFT dynamics assume that the singularities consist of poles. Regge
asymptotics further requires that these singularities lie on surfaces in the e` − e∆ plane, i.e.,
each surface can be labelled by e∆ = e∆α(e`), α = 1, 2, · · · , each defining a spectral curve. As
discussed in [5], the most important singularity is that interpolating the CFT primary associ-
ated with the stress-energy tensor, i.e., for d = 4, ` = 2, (e` = 1), a pole at ∆ = 4, (e∆ = 2).
This singularity, at d = 4, is historically referred to as the Pomeorn. The associated spectral
curve can be found in strong coupling via AdS/CFT, leading to a simple parabolic curve.

9We have multiplied by a factor of 2 from that defined conventionally, e.g., [12]. We have also adopted the sign
convention suitable for our Minkowski treatment.

10These unitarized eigenvalues (e∆, e`) are related to the root description of our symmetry group SO(d, 2) [10].
Our Jacobian is due to requiring a Unitary Irreducible Representation via the Casimir operator. It is related to the
group measure necessary for defining the inner product [9,13].
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In order to extract the contribution of the Pomeron at high energies, it is necessary to ex-
tend analytically the representation into the e`− e∆ plane. This in turn requires one to continue
the conformal harmonics analytically. The continuation is analogous to the well-known rela-
tion between conventional Legendre functions P`(z)

tan`π =Q`(z)−Q−`−1(z). This as well as other
related issues will be examined in [10].

4 Applications to Diffractive Physics

The CFT methods described here are most relevant for scattering where the causal structure is
important. However, in order to apply these results to QCD studies the conformal symmetry
must be broken. This is usually done by working at finite temperature or via a confinement
deformation of the dual AdS space: a cutoff is introduced such that the dual space is only
asymptotically AdS but has a cutoff in the bulk (at a scale ∼ ΛQCD). Various thermal, hard
wall, and soft wall models for these cutoffs have been developed to great success.

Our discussion on CFT correlators provides a unified analytic framework that can work
directly with both a Minkowski and a Euclidean metric. The causal structure set up in Fig.
1 is appropriate for discussing near forward scattering for t < 0 and diffractive physics, e.g.,
examining deep inelastic scattering and inclusive production (e.g. [14]). In particular, it will
be profitable to apply this framework to the study of deeply virtual Compton scattering (DVCS)
(e.g. [15,16]).

5 Conclusion

A study of scattering in CFT can provide significant conclusions to be drawn for QCD processes
due to its near conformal nature. In a direct group theoretic approach, we expand the 2→ 2
scattering amplitudes in a partial wave expansion. These partial waves are unitary irreducible
representations of the Lorentzian conformal group SO(d, 2) induced by the maximal abelian
subgroup (MASG) A= SO(1,1)×SO(1, 1). As is typical in a Regge treatment, we are interested
in the t-channel OPE of the scattering process γ∗+γ∗→ γ∗+γ∗ which in turn lends a natural
causal structure to our 4-point functions. With an appropriate gauge choice, we are able
to relate the two conformal cross ratios to the 2 parameters of our MASG. By restricting our
partial waves to the space of generalized spherical functions and defining an appropriate inner
product, we extract the precise leading Regge behavior.

Funding information P.A. is supported by the National University of Singapore Research
Scholarship. This work was supported in part by the U.S. Department of Energy (DOE) under
Award No. DE-SC0015845 for R.C.B. T.G.R is funded through an internal research fund at
Michigan State University.
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