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Josephson effects between the Kitaev ladder superconductors
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Abstract

The two-leg ladder system consisting of the Kitaev chains is known to exhibit a richer
phase diagram than that of the single chain. We theoretically investigate the variety
of the Josephson effects between the ladder systems. We consider the Josephson phase
difference θ between these two ladder systems as well as the phase differenceφ between
the parallel chains in each ladder system. The total energy of the junction at T = 0
is calculated by a numerical diagonalization method as functions of θ , φ, and also a
transverse hopping t⊥ in the ladders. We find that, by controlling t⊥ and φ, the junction
exhibits not only the fractional Josephson effect for the phase difference θ , but also the
usual 0-junction and even π-junction properties.
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1 Introduction

A topological Josephson junction consisting of two Kitaev superconducting chains exhibits a
fractional Josephson effect with a 4π periodicity in the current-phase relationship [1]. This is
a promising experimental proof for the existence of Majorana zero modes (MZMs) at the edges
of the Kitaev chains. Experimentally, several methods have been proposed to realize the Kitaev
chains, and a promising method is to create p-wave pairings by the proximity effect between
an s-wave superconducting substrate with strong spin-orbit interaction and semiconductor
nanowires [2]. Furthermore, theoretically, multi-terminal Josephson junctions of Kitaev chains
have been proposed to realize the so-called braiding operation of MZMs to perform topological
quantum calculations [3]. In such hybrid systems, the Majorana fermion signature may appear
as a zero-bias peak in conductance, and many experimental attempts have been made [4, 5].
However, no conclusive evidence for the existence of MZM, let alone braiding operations, has
yet been obtained.

Despite the experimental difficulty of realization and the theoretical simplicity, the Kitaev
chain is still attracting considerable interest. One direction is to study the ladder systems
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consisting of multiple Kitaev chains. It has been reported that a richer phase diagram and novel
phenomena can be obtained even in minimal two-leg ladder systems [6–9]. The Hamiltonian
of the two-leg Kitaev ladder system in general is given as

H =−µ
N
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c†
i, jci, j −

N−1
∑
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where i = 1, 2, · · · , N is the site number of the each chain and j = 1,2 is the chain number in
the Kitaev ladder. Also, t is the nearest-neighbor transfar integral, µ is the chemical potential,
∆ j = ∆eiφ j is the intra-chain p-wave superconducting pair potential with phase φ j , and t⊥
and∆⊥ are the coupling between two chains. As is well known, in the single Kitaev chain, the
topological phase is characterized by the Z2 invariant, and the phase diagram is described only
by µ/t. In contrast in the two-leg Kitaev ladder systems, a Z topological invariant characterizes
the topological phase, and the inter-chain parameters t⊥ and∆⊥ also affect the phase diagram.
Recently, Maiellaro et al. have shown that the system exhibits a topological phase either with
four or two Majorana zero-energy modes [7]. They also find that the topological phase survives
also when the Kitaev’s criterion ∆> 0 and |µ|< 2t for the single chain is violated.

Because of the multiplicity of the Majorana zero modes and topological quantum numbers,
we can naturally expect that the Josephson effect in the ladder systems may exhibit various
current-phase relations. Thus in this paper, we investigate the Josephson effects in systems
consisting of two two-leg Kitaev ladders by using numerical diagonalization. Finding a va-
riety of Josephson current-phase relationship would open up a wider range of the potential
applications of the Kitaev chains other than topological quantum computation.

This paper is organized as follows. In section 2, we introduce the model Hamiltonian for
the Josephson junction considered here. In section 3, we show the Josephson energy-phase
relationship by using numerical diagonalization of the Hamiltonian. Finally, we summarize
our results in section 4.

2 Model Hamiltonian

In this section, we introduce a junction system consists of the two Kitaev ladders. The Hamil-
tonian of the present system depicted in Fig. 1 is written in the standard notation as

H = HL +HR +HT , (2)
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Figure 1: Schematic illustration of the junction system consisting of two Kitaev lad-
ders. Note that the superconducting pair potential ∆ is only assumed within each
chain. Here, two superconducting phase differences are assumed; θ is the Joseph-
son phase difference across the junction, and φ is the additional inter-chain phase
difference.

where cL
i, j/c

R
i, j is the annihilation operator of the electron on the i-th site of the j-th chain

to the left/right side of the junction. Thus the last contribution in (2), HT, corresponds to
the tunnel Hamiltonian between the L/R ladders, given explicitly in (5). We note that the
superconducting pair-potential ∆ j is only assumed within each chain. We also assume the
two superconducting phase differences θ and φ; θ is the Josephson phase difference across
the junction, and φ is the phase difference between the chains j = 1 and 2. It is worth noting
here that this interchain phase difference φ may induce several novel phenomena such as the
modulation of the phase difference of the superconducting order parameter in two chains [8]
or the increasing of crossed Andreev reflection [9]. Thus we introduce φ here in the hope that
a novel phenomena would be induced again.

Throughout this paper, we take t = 2∆ = 1 and tT = 0.1. The total number of sites per
each chain is set to N = 100 for calculation of the Josephson effect. We compute the ground
state energy of the whole system as a function of θ for several t⊥, µ, and also φ by using
numerical diagonalization.

3 Results

First, let us look at the Josephson energy-phase relationship EJ (θ ) of the system (2). Figure 2
shows EJ (θ ) for several values of t⊥/t, fixing the other parameters as ∆/t = 0.5, µ/t = 0.5
and φ = π/3. We find four qualitatively different types of behaviours of EJ (θ ) as seen in
Figs. 2 (a)-(d). Figure 2 (a) is exactly the topological Josephson energy-phase relationship
with 4π-periodicity. This is just because t⊥ = 0; there are two independent Josephson junc-
tions of the Kitaev chains. In Fig. 2 (b), where t⊥/t = 0.1, unusual behavior can be seen
around 0.5< θ/π < 1.5. The Josephson energy EJ (θ ) exhibits a transition from an increasing
function to a decreasing function of θ at around θ/π ≃ 0.5. With further increasing t⊥/t
to 0.3, EJ (θ ) exhibits qualitatively different, but well-known θ -dependence; the so-called π-
junction as shown in Fig. 2 (c). Finally, if we take t⊥/t = 1.0, the system switches back to the
usual 0-junction property as shown in Fig. 2 (d).

Here, the question arises; how the four characteristic behaviors found here depend on the
model parameters, in particular µ and t⊥. Thus, we next look at the correlation between the
types of EJ (θ ) and the topological phases of the Kitaev ladder system. Before that, however, it
is necessary to recall that the phase diagram of the ladder system is modified when φ > 0 be-
cause the symmetry class of the system changes from BDI to D due to the broken time-reversal
and chiral symmetries, and changes back to BDI when φ = π [10]. Thus, for 0 < φ < π, the
system is characterized by a Z2 invariant M called the Majorana number, instead of the Chern
number w for φ = 0 [7]. Following Maiellaro et al. [7], we calculate the Chern number w

014.3

https://scipost.org
https://scipost.org/SciPostPhysProc.11.014


SciPost Phys. Proc. 11, 014 (2023)

0

0.01

0.02

0 0.5 1 1.5 2

0

0.01

0.02

0 0.5 1 1.5 2

0

0.04

0.08

0 0.5 1 1.5 2

-0.02

-0.01

0

0 0.5 1 1.5 2

Figure 2: The Josephson energy-phase relation EJ (θ ) of the ladder junction model
when (a) t⊥/t = 0, (b) t⊥/t = 0.1, (c) t⊥/t = 0.3, (d) t⊥/t = 1.0. The cusp
structure at θ = π in (a) is the consequence of the level crossing of two energy
branches proportional to ± cos (θ/2), each of which has a 4π-periodicity.

(c)

2
1

(a) (c)

0

(b)(c)

-1
1

(c)

Figure 3: The topological phase diagrams of the Kitaev ladder system for
(a) φ = 0, (b) φ = π/3, (c) φ = π, by using the Chern number w for (a) and
(c), and also the Majorana number M for (b). The integers in the figures indicate
the Chern number in (a) and (c), and the Majorana number in (b). The system is in
the topologically nontrivial phases when w ̸= 0 or M= −1.

and the Majorana number M for several values of φ to see the effects of the interchain phase
difference φ on the topological phase diagram of the Kitaev ladder system, and the results are
summarized in Fig. 3. For φ = 0, the well-known phase diagram of the Kitaev ladder system
is reproduced as shown in Fig. 3 (a). We also confirm that the Chern number w is 0 for any
µ and t⊥ when φ = π, thus the system is always in a topologically trivial phase, as shown in
Fig. 3 (c). If the symmetry class of the system is D when 0< φ < π, the system is in a topolog-
ically nontrivial phase when M= −1, and the region where this is the case shown in Fig. 3 (b)
coincides with that with w = 1 when φ = 0. Now we can see the relation between the types
of Josephson coupling and the topological phases realized in the Kitaev ladder system based
on the phase diagrams shown in Fig. 3.

Figure 4 shows which type of EJ (θ ) appears on the phase diagram of the Kitaev ladder
system calculated for several values of φ. For φ = 0 shown in Fig. 4 (a), we can see that the
region where the topological Josephson energy-phase relationship with 4π-periodicity (indi-
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Figure 4: The correlation between the types of EJ (θ ) on the phase diagram of the
Kitaev ladder for (a) φ = 0, (b) φ = π/3, (c) φ = 2π/3, and (d) φ = π. Solid lines
represent the boundary of the topological phase.

cated by blue dots in the figure) appears coincides with the region with w ̸= 0 in the phase
diagram Fig. 3 (a). In the remaining region in Fig. 4 (a), where the w= 0, the system exhibits
the 0-junction property. For 0 < φ < π shown in Fig. 4 (b) and (c), the π-junction region
appears (shown by red dots) in a fairly wide region of the phase diagram. We notice that the
region where the π-junction appears almost coincides with the region with the Majorana num-
ber is 1 where the system is in the topologically trivial state. If we takeφ = π, the regions with
the 4π-junction disappears because the the Chern number w is 0, i.e., there is no MZMs, in
the whole region of the phase diagram, as shown in Fig. 3 (c). Instead, the π-junction region
can be seen in wider range of the phase diagram. We should note here that the unusual EJ (θ )
found in Fig. 2 is realized in the narrow region where t⊥/t is small shown in green dots in
Fig. 4 (b) and (c). From this result, it is found that 4π-period energy-phase relationship al-
ways appears in the region with w ̸= 0 or M= −1, and π-junction appears in the region with
w = 0 or M = 1. More detailed studies on the origin of the various Josephson energy-phase
relation EJ (θ ) will be reported in a forthcoming paper.

4 Summary

In summary, we have investigated the Josephson energy-phase relationship in the Kitaev ladder
systems by using numerical diagonalization, stimulated by the richer phase diagram and novel
properties reported in the previous works [6–9]. We have found the variety of Josephson
energy-phase relationships, such as the topological 4π-, π-, and conventional 0-junctions. It is
noteworthy that these Josephson current properties can be switched by externally controlling
the interchain coupling t⊥. This will open up new application possibilities [11–14] for the
Kitaev superconducting chain other than topological quantum computation.
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