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Abstract

Recent theoretical advancements have made the QCD axion a stronger dark matter can-
didate, especially in the sub-µeV range. While cavity haloscopes have made significant
progress in excluding QCD axions in the 1−100 µeV region, the 1 peV−1 µeV region re-
mains unexplored. The DMRadio program consists of a series of experiments designed to
probe low mass axions. DMRadio-50L uses a 1 T average field toroidal magnet and a
high-Q LC-oscillator with target sensitivity to axions of gaγγ < 5× 10−15 GeV−1between
5 kHz and 5 MHz. DMRadio-m3 consists of a higher frequency LC-oscillator in a 4 T
peak field solenoidal magnet with sensitivity to the DFSZ model of QCD axions be-
tween 30 MHz and 200 MHz. In this work, we present the status of DMRadio-50L
and DMRadio −m3.
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1 Introduction

The QCD axion is a well motivated dark matter candidate as it can resolve the Strong CP
problem of quantum chromodynamics (QCD) [1–4] while simultaneously having a favorable
production mechanism which can populate the universe with the currently observed abun-
dance of cold dark matter (DM) [5–7]. In particular, through interactions with QCD, the axion
obtains a mass, ma ≈ 5.7 neV(1015 GeV/ fa), where fa is the energy scale associated with the
breaking of the Peccei-Quinn symmetry [8]. Recent theoretical results have shown that the
axion can be a well motivated dark matter candidate if this symmetry breaking scale occurs
above the energy scale of inflation [9, 10]. Since fa could be as high as the Planck scale, this
has motivated experimental efforts to search for low mass (peV-µeV) axions.
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Many experimental searches for the axion utilize its coupling to the Standard Model
through a term in the Lagrangian of the form

L ⊃ gaγγaFµν F̃µν =
1
4

gaγγaE ·B , (1)

where gaγγ is the axion-photon coupling strength that scales inversely with the symmetry
breaking scale fa, a is the axion field, and Fµν is the electromagnetic field tensor [11]. Through
this interaction, an axion in a magnetic field produces a real photon whose frequency matches
the mass of the axion (ν = mac2/h). This is the interaction that cavity haloscopes have used
to exclude portions of the QCD axion parameter space [12–18].

2 LC-resonators as axion detectors

The axion-photon coupling shown in Equation 1 leads to a modification of Maxwell’s equations
by introducing axion-field dependent terms. In the presence of a DC magnetic field, the axion
can be modeled as an effective oscillatory current density:

Jeff ≈ gaγγ

p

2ρDM cos(ma t)B , (2)

where ρDM ≈ 0.45 GeV/cm3 is the local DM density [19]. This is an accurate formalism since
the number density of axions per quantum state is much greater than unity and hence they
can be modeled as a classical wave.

To couple to this effective current, experiments can utilize microwave cavities in a magnetic
field that resonate when the frequency of the axion current matches that of a cavity mode of
interest [12–18]. Using cavities, however, is unfavorable at lower frequencies since this would
require increasingly larger cavities. As such, the DMRadio program uses resonators in the
lumped-element regime where the resonance is the LC-resonance of the device, and thus the
corresponding wavelength of the signal is much larger than any characteristic length scale of
the detector.

The operating principle of DMRadio [20–24], and LC-resonator axion detectors in general
[25–33], is that a magnetic field is placed inside an inductive element. The axion then produces
the effective current (Equation 2) in this inductor and the resulting screening currents on the
inductor walls can ultimately be measured by a device such as a DC SQUID. By placing a
capacitor in series with the inductor, an LC-resonance is achieved, with a quality factor Q, and
hence the current is enhanced by a factor of Q on resonance.

3 DMRadio-50L

DMRadio-50L excludes axions at an axion-photon coupling of gaγγ > 5× 10−15 GeV−1 in the
mass range of 20 peV < ma < 20 neV (5 kHz < νa < 5 MHz), shown in Figure 1. Apart from
its sensitivity to axions, the DMRadio-50L experiment acts as a testbed platform for novel
quantum sensors. This experiment is being built on the Stanford University campus.

The experiment utilizes a ∼ 50 L toroidal magnet that sustains an average DC magnetic
field of 1 T. A superconducting sheath is then wrapped around the magnet. Since the effective
axion current flows within the volume of the magnet, it inductively couples to the sheath, thus
producing screening currents on the inner walls of the sheath. By cutting vertical slits in the
toroidal sheath, the currents flow from the inner walls of the sheath onto the outer walls –
this ultimately induces an AC flux in the central hole of the toroid which is picked up by an
inductor in an LC resonator. The capacitive portion of the resonator is tunable, which allows
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Figure 1: The anticipated exclusion limits for DMRadio-50L (dark blue) and
DMRadio-m3 (light blue). The QCD axion band is shown in yellow. Existing lim-
its from CAST [34] are shown in dark gray and haloscope exclusions are shown in
green. DMRadio-50L has sensitivity to axions with mass 20 peV < ma < 20 neV
(5 kHz < νa <5 MHz) at an axion-photon coupling of gaγγ > 5 × 10−15 GeV−1

and DMRadio-m3 has sensitivity to DFSZ axions at 100 neV < ma < 800 neV
(30 MHz < νa < 200 MHz) and KSVZ axions at 40 neV < ma < 100 neV (10 MHz
< νa < 30 MHz). Following the conventions of the community, all these limits are
set using the standard halo model, however other models are being considered by
the DMRadio collaboration.

for DMRadio-50L to resonantly scan over several decades in mass. The circuit diagram for the
experiment as well as a corresponding illustration of the detector are shown in Figure 2.

To avoid having the inductor couple to the lossy components of the magnet within the
sheath, the slits are covered by superconducting elements whose minor radius is larger than
that of the sheath.

All of these components are placed in a superconducting shield and then cooled using a
dilution refrigerator. To minimize thermal noise, the resonator is held at a base temperature
of approximately 20 mK. As of Summer 2022, all major components of DMRadio-50L have
either been delivered to the site location or are under construction, and final assembly of the
experiment will occur in Summer 2023.

While the first commissioning of the experiment employs DC SQUIDs for the readout, fu-
ture iterations of the experiment will employ and test amplifiers with added noise below the
standard quantum limit (SQL) [35, 36]. Since the sensitivity of DMRadio is set by the sensi-
tivity bandwidth of the experiment [37], and not on-resonance behavior, one can benefit from
techniques that take advantage of the tradeoffs between the imprecision noise and backaction
noise of quantum amplifiers to achieve a significant increase in scan rate.
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Figure 2: (a) A full circuit diagram for the layout of DMRadio-50L. The effective
axion current inductively couples to the sheath which then couples to the inductor
in the center of the toroid. The LC resonator is then inductively coupled to a readout
device like a DC SQUID. (b) An illustration of key components of DMRadio-50L. Part
of the sheath has been hidden to reveal the magnet inside it. The flux Φb is the axion
induced flux due to the screening currents on the outside of the sheath.

4 DMRadio-m3

DMRadio-m3 has sensitivity to DFSZ axions [38, 39] at 100 neV < ma < 800 neV
(30 MHz < νa < 200 MHz) and KSVZ axions [40, 41] at 40 neV < ma < 100 neV
(10 MHz < νa <30 MHz) as shown in Figure 1 [42, 43]. This experiment is being built at
SLAC National Lab.

Since the resonance frequencies of DMRadio-m3 are higher than those of DMRadio-50L,
a toroidal geometry would have parasitic resonances that would diminish the sensitivity to
axions in portions of the desired frequency range. As such, the optimal design for such a
structure utilizes a solenoidal magnet – this magnet sustains a peak DC field of> 4 T. To couple
the vertically oscillating axion current, a copper coaxial pickup structure is placed inside the
magnetic field. Tuning of the resonance frequency is achieved by placing a tunable reactance
across this coax [43].

Bucking coils are incorporated to steeply reduce the magnetic field above the coaxial struc-
ture such that superconducting elements can be placed there. These elements include the tun-
able capacitor for the LC-resonator and the DC SQUIDs. As such, the primary loss source for
the circuit is set by the electron losses in the non-superconducting copper coax.

The design of DMRadio-m3 is currently being completed as one of the six experiments
funded under the US Department of Energy Dark Matter New Initiatives program.

5 Conclusion

DMRadio-50L and DMRadio-m3 are poised to exclude axions in the peV-µeV region with world-
leading sensitivity. Alongside future experiments such as DMRadio-GUT [22] which utilizes
high-field and high-volume magnets as well as beyond-SQL amplifiers, the DMRadio program
covers a significant portion of the sub-µeV axion parameter space at DFSZ sensitivity. Recent
theoretical advancements have made the axion an even more attractive candidate dark matter
candidate, especially at low masses.

This series of experiments will also act as a platform for testing novel beyond-SQL ampli-
fiers operating in the thermal limit. Upon employing these amplifiers, such experiments gain
a significant enhancement in the scan rate [37].
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