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Abstract

The QCD axion and axion-like particles (ALPs) are well motivated candidates for Cold
Dark Matter (CDM). Such models may be divided into two classes depending on whether
the associated Peccei-Quinn (PQ) symmetry is broken or not during inflation. The lat-
ter case is usually considered to be quite simple with relic density depending only on
the corresponding decay constant and with no constraints from the known bounds on
isocurvature perturbations. We will show that the situation is much more complicated.
We will discuss conditions which should be fulfilled by ALP models with U(1) unbroken
during inflation to be phenomenologically interesting.
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1 Introduction

The PQ mechanism (see a review on axion cosmology, e.g. [1]) relies on an introduction of a
global chiral U(1)PQ symmetry, under which a charged complex scalar ΦPQ transforms. The
U(1)PQ is spontaneously broken. Usually the following simple potential for ΦPQ is considered

VPQ = λ
�

Φ†
PQΦPQ −

1
2

f 2
a

�2

, (1)

where fa denotes the spontaneous symmetry breaking scale and a will denote the correspond-
ing (pseudo) Goldstone boson, the QCD Axion; ΦPQ = (1/

p
2)S eia/ fa . The QCD axion mass is

generated later by non-perturbative potential Va which reads

Va = Λ
3
QCDmu

�

1− cos
a
fa

�

≡ m2
a f 2

a (1− cosθ ) , (2)
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where ΛQCD ≈ 0.2 GeV, mu is the u-quark mass, which implies ma ≃ 6 ·
�

106 GeV/ fa

�

eV.
Astrophysical data constrain fa to roughly 109 GeV ≲ fa ≲ 1017 GeV. Generalization to an
ALP ϕ results in considering its mass mϕ as an additional free parameter (of some underlying
non-perturbative sector characterized by scale Λϕ). In what fallows we will simply use “the
axion” to cover both the QCD axion and an ALP and Va to denote the corresponding potential.

The crucial assumption of the misalignment mechanism is that initially the axion is dis-
placed from the minimum of its potential (2), i.e. θi ̸= 0. The onset of the corresponding
oscillation of a happens when the Hubble parameter decreases to H ≃ (1/3)ma. The ampli-
tude of oscillations soon starts to decrease with the scale factor as ∼ R−3/2 and at the particle
level the oscillating field a can be interpreted as a condensate of cold a-particles. Their inter-
actions with thermal bath are suppressed by powers of 1/ fa. Axion condensate constitutes a
CDM candidate. For the QCD axion the onset of oscillations happens around T = 1 GeV. The
CDM relic density is saturated by the QCD axion for fa ≃ 1011 GeV with θi ≃ 1.

The θi depends on the inflationary dynamics of ΦPQ. There are two distinct cases which
are specified by the hierarchy between fa and the Hubble parameter during inflation HI .
In the so-called “PQ broken scenario” one requires fa ≫ HI . Here |ΦPQ| = fa during infla-
tion [2]; the θi is fixed in our Universe, but random. The axion direction is massless during
inflation. In turn, quantum fluctuations of each mode k that leaves the horizon (k ≲ R HI)
“freeze”. Hence, during inflation stochastic fluctuations δθ to the homogeneous component
θi are generated over Hubble volumes. The average squared grows linearly with e-folds ∆Ne,
〈δθ2〉= H2

I /4π
2 f 2

a ·∆Ne. The larger fa, the slower δθ dynamics. The stochastic fluctuations
δθ become CDM relic density isocurvature fluctuations after Va is generated, later in the post-
inflationary Universe. There are strong constraints on the CDM isocurvature power. For the
QCD axion CDM (θi ≃ 1, fa ≃ 1011GeV) these imply HI ≲ 107 GeV while for the ALP CDM one
finds HI ≲ 1010GeV. Notice, that the upper bounds on HI are much stronger than O(1014)
GeV obtained from constraints on tensor perturbations in the CMB.

Therefore of interest is the complementary so-called “PQ unbroken scenario” in which one
requires fa ≪ HI . The traditional approach [1] assumes that the thermal mass correction
(α/24)T2

GHΦ
†
PQΦPQ, due to the Gibbons-Hawking temperature TGH = HI/2π, restores U(1)PQ

during inflation and ΦPQ attains zero. It is often assumed that no stochastic fluctuations are
generated. The U(1)PQ is broken later, after inflation, when T drops below the critical tempera-
ture. After the corresponding U(1)PQ phase transition, large spacial fluctuations are generated
〈δθ2〉= π2/3. The fluctuations have “white noise” power [3]. The corresponding axion CDM
isocurvature appears on relatively small scales. In particular, for the QCD axion the so-called
“classical axion window” for misalignment, i.e. fa ≃ 1011 GeV and 1012 GeV ≲ HI ≲ 1014 GeV,
is unconstrained by such isocurvature.

We would like to stress that the traditional approach to the “PQ unbroken scenario” is
over-simplified and often leads to incorrect conclusions. Indeed, the thermal mass of the ra-
dial mode V ′′PQ(0) = αH2

I /96π2 ≪ H2
I [4]. As a consequence, ΦPQ features the stochastic

dynamics during inflation, δΦPQ emerges. Inflationary evolution of light fields can be studied
using the so-called “stochastic approach” [5]. Importantly, evolution of a probability distribu-
tion P(t,χ) of finding a light field χ, coarse-grained over HI volumes, in dnχ (which equals
P(t,χ) dnχ), can be derived. P(t,χ) satisfies the Fokker-Planck equation. The latter has a

stationary solution, P(χ)∝ exp
n

− 8π2

3H4
I
V (χ)
o

. For example, for VPQ described by eq. (1), the

P(t,ΦPQ) approaches P(ΦPQ) after ∆Ne ≃ 15.×
� 1
λ

�1/2
e-folds [2]. For λ≳ 0.05 this happens

within∆Ne < 60. In turn, since P(ΦPQ) respects U(1)PQ, one obtains that 〈δθ2〉 ≃ π2/3. Even
if U(1)PQ is not thermally restored after inflation, the traditional over-simplified approach to
the “PQ unbroken scenario” could lead to correct results if λ≳ 0.05, but discrepancies are ex-
pected for smaller λ. For the case λ≪ O(0.01) it is customary to assume long enough inflation
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so that P(ΦPQ) is achieved before the last 60 e-folds of inflation over Hubble volumes of order of
our Universe when it crosses the horizon. Hence, the typical initial (homogeneous) value of the

radial mode, Si , corresponds to the region around the maximum of P(S)∝ S exp
�

− 8π2

3H4
I
V (S)
�

.

More explicitly, one finds Si ≡ 〈S〉 ≃ 0.3 ·HI/λ
1/4 for the quartic potential.

Sometimes very large Si is found useful. Correspondingly, very small λ ≲ 10−20 are con-
sidered, for example, in the context of Kinetic Misalignment [6] or Parametric Resonance [7]
Mechanisms of axion DM production. However, if the coupling is so small, radiative correc-
tions (from other couplings) could become relevant. The goal for the remaining of this work
is to examine the role of radiative corrections to ΦPQ (post)inflationary dynamics.

2 The radiative potential for ΦPQ during inflation

In order to examine the role of radiative corrections, we will take the Gildener-Weinberg ap-
proach [8] to the Coleman-Weinberg potential, i.e. we renormalize at scale µ at which the
running self-coupling vanishes, λ(µ) = 0. ΦPQ always couples to some fermions. For definite-
ness we focus on the KSVZ model which introduces a heavy quark QL ,QR (charged under the
chiral U(1)PQ) and Yukawa coupling gΦPQQ̄LQR + (h.c.). Contribution of Q to the Coleman-
Weinberg potential VCW tends to destabilize it. Potential VCW may be bounded from below if
ΦPQ couples also to some bosons. For simplicity we will consider Nφ copies of a scalar singlet
φ, of bare mass mφ and the following coupling to ΦPQ and non-minimal coupling to gravity:

λmix φ
2Φ†

PQΦPQ +
1
2
ξφRφ2 , (3)

where R denotes the Ricci scalar. Neglecting effects caused by non-zero temperature and
non-zero curvature of the space-time, the CW potential reads

VCW =
1

64π2

¨

NφM4
φ

�

log

�M2
φ

µ2

�

−
3
2

�

− NQM4
Q

�

log

�

M2
Q

µ2

�

−
3
2

�«

, (4)

where M2
φ
= m2

φ
+ λmixS2 and M2

Q =
g2

2 S2. However, it occurs that in many cases the
curvature effects may change quite substantially characteristics of the CW potential. In de
Sitter approximation for the inflationary space-time, R= 12H2

I . VCW generalizes to [9]:

Vinf∝
1

64π2







M4
φ



log

�

�Mφ

�

�

2

µ2
−

3
2



−M4
Q



log

�

�MQ

�

�

2

µ2
−

3
2



−
1

15
H4

I log
|Mφ |2

µ2
+

38
15

H4
I log
|MQ|2

µ2







, (5)

where now M2
φ
= m2

φ
+ (ξφ −

1
6)12H2

I + λmixS2 and M2
Q = H2

I +
g2

2 S2. Since V is some-
what complicated, in the remaining we will focus on a particular, simplified case. First,
we choose that the bosonic and fermionic contributions are similar: Nφ = NQ = 4 · 3 and
λmix = 1/2g2(1+ε), where 0< ε≪ 1. This corresponds to a quasi “SUSY” limit. Second, we
assume thatφs do not feature the inflationary stochastic fluctuations, M2

φ
(S = 0)> 1

4 H2
I [10].

Finally, we assume that the non-minimal coupling ξPQ RS2 is negligible.
An interesting feature of V emerges after it is expanded in small S, V = C2 ·S2+C4 ·S4+ . . .

One obtains C4 ∝
�

λ2
mix log

M2
φ
(S=0)

µ2 − ( g2

2 )
2 log

H2
I
µ2

�

. Hence, C4 < 0 if HI is not too small,

which implies that V has a (second) minimum at a somewhat large scale. This situation is
illustrated in fig. 1 for exemplary choices of couplings and dimensionful parameters. One can
see for somewhat intermediate HI , the U(1)PQ can be restored, while for yet larger HI there
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Figure 1: V/µ4 as function of S/µ for ξφ = 1/6,λmix = 0.2, g2 = 0.18; mφ/µ = 0.5(1.) in the left
(right) plot.

Figure 2: V/µ4 as function of S/µ for ξφ = 1/6,λmix = 0.2; g2 = 0.19(0.196), mφ/µ = 0.2(1.) in
the left (right) plot.

indeed emerges a global minimum at larger scale. Moreover, in fig. 2 it is illustrated that the
scale S of the second (global) minimum grows as the “SUSY” limit is approached. Notice,
that around the global minimum V ′′ ≪ O(H2

I ), so in this scenario the stochastic dynamics
determines Si provided long enough inflation. The asymptomatic Fokker-Planck probability
distribution for the radial mode S for ε≪ 1 has a small variance around the minimum.

More quantitatively, the following estimate holds for Si if HI is not too small (in the sense
outlined above) and the large scale minimum occurs: S2

i ∼ O(1) · 1/ε · H2
I /g

2. On the other
hand, if HI is too small one simply obtains S2

i ∼ O(1) · H2
I /g

2. Such “SUSY” enhancement of
Si could be desirable in various non-thermal mechanisms for DM generation. For example,
if stochastic fluctuations δθ survive until Va is generated and the misalignment mechanism
constitutes total DM relic, then the enhancement with ε = 10−3 relaxes bounds on the cou-
plings due to constraints from CDM isocurvature to order λmix , g2 ≲ 10−5. Same constraints
but without the enhancement imply a significantly stronger bound, λmix , g2 ≲ 10−8. In the
next section we argue that δθ can survive until Va emerges.

3 Post-Inflationary dynamics of ΦPQ in the radiative potential

For δθ fluctuations to survive until Va is generated, it suffices that oscillations of the radial
mode S survive until a global minimum emerges at some S ̸= 0 in the post-inflationary S
potential, which we will denote by V . Indeed, in such a case, the memory of the angular
direction of the radial oscillations survive, hence δθ survive. Whether particlesφ,Q constitute
components of a thermal bath, depends, in particular, on the underlying model of reheating.
Hence, thermal corrections to V might be absent; for simplicity we assume the latter for the
remaining discussion.1 For some time after the end of inflation, due to the Hubble friction, the
field S has a constant value Si . It starts to oscillate (in the post-inflationary analogue of (5))

1In some cases substantial thermal corrections, if present, may change some features of a model. However, this
depends on details of a given model. Detailed analysis of such cases is beyond the scope of this work.
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when the value of the Hubble parameter decreases to Hi (equal about one third of the effective
mass of the radial mode which depends on Si so also on HI) approximately given by

H2
i ≈ H2

I
3λmix

16π2

�

�

1− 4ξφ
�

−
2m2

φ

9H2
I

�

ln

�

(3− 12ξφ)H2
I −m2

φ

2εµ2

�

≪ H2
I . (6)

Thus, typically in our model S field starts to oscillate when the reheating process is completed,
if the reheating efficiency is big enough.

We will denote the critical Hubble parameter, below which the curvature effects do not suf-
fice to restore U(1)PQ, by Hc . To show that axion fluctuations can survive, below we simply list
a couple of concrete “benchmarks” for which Hc ≫ Hi; for ξφ =

1
6 and ξφ =

3
16 respectively:

{ε= 10−3 , λmix = 1.4 · 10−5 , µ= 1.3 · 1012 GeV , HI = 1.5 · 1012 GeV , m= 7.7 · 1011 GeV} ,
{ε= 10−2 , λmix = 1.3 · 10−6 , µ= 4 · 109 GeV , HI = 2 · 1012 GeV , m= 2 · 109 GeV} .

(7)
The examples were chosen such that the CDM isocurvature constraints are fulfilled, the ALP
condensate saturates CDM relic density and HI ≫ 1010 GeV. Some features of our model are as
in “unbroken U(1)PQ” models: HI may be large, minimum of V (Φ) during and after inflation
is different than the final one related to the axion decay constant, PQ field evolves during and
after inflation. On the other hand, non-vanishing Φ during inflation as well as characteristics
of axion DM and its isocurvature perturbations are typical for “broken U(1)PQ” case.

4 Conclusions

The traditional description of ΦPQ dynamics in the “PQ unbroken scenario” ( fa≪ HI) is often
too simplified. For the quartic ΦPQ potential this is the case if λ≪ O(0.01). Instead of staying
at zero, the radial component S of ΦPQ acquires large initial value Si (almost homogeneous)
in the observable Universe, despite the presence of temperature corrections.

In various non-thermal mechanisms axion/ALP DM generation, very large Si is considered,
which requires extremely small λ. In such cases radiative corrections could be important and
it is therefore relevant to investigate their role. To this aim, we studied ΦPQ dynamics in the
CW potential in the inflationary and post-inflationary Universe. We used as an example the
quasi “SUSY” limit in which the bosonic and fermionic contributions to CW are of very similar
magnitude. We found that curvature effects result in significant enhancement of Si , if HI is
just not too small, i.e. at least of order of the scale of the CW potential.

The otherwise desirable enhancement of Si also suppresses the inflationary fluctuations
of the axion. If these fluctuations are not washed out until the axion potential emerges, they
constitute the CDM isocuvature mode. Since the latter is strongly constrained, the enhance-
ment of Si weakens the corresponding bounds on the couplings in the CW potential. Finally,
we discussed the (ALP) case with negligible thermal corrections to the PQ potential in the
post-inflationary Universe, to argue that ALP fluctuations may survive in natural and phe-
nomenologically interesting parameter regions.
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