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Abstract

Self-similar solutions for fuzzy dark matter are very different from their counterparts in
the standard cold dark matter model. In contrast to the familiar hierarchical collapse
of the current model for structure formation, they correspond to an inverse hierarchical
blow-up. This fact highlights the gravitational cooling process, which in the absence of
dissipation, allows the system to eject excess energy through the intermittent expulsion
of clumps of matter. These surprising behaviours are due to the wave properties of
the Schrödinger equation and to the quantum pressure. These features are printed in
the Eulerian density-velocity representation of the nonrelativistic scalar field, or in the
Lagrangian representation in the mass-shell trajectories.
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1 Introduction

Many measurements have confirmed with great accuracy that dark matter (DM) represents
about 83% of the matter content of the Universe. Thanks to all this evidence, cosmologists
have converged to Standard Cosmological Model, where the hypothesis of weakly interacting
massive particles (> 1 Gev) [1,2] has been favoured for theoretical and experimental reasons.
However, as observations and simulations have improved, a number of discrepancies between
the predictions of the standard cold dark matter model (CDM) and observations on galactic and
subgalactic scales have emerged. This has revived interest in alternative scenarios, including
the possibility that dark matter is associated with a scalar field. One of the most attractive
features of these models is the formation of soliton-like structures of large sizes that could
describe the core structure of galactic halos [3]. These equilibrium configurations lead to
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smooth density profile [4, 5] at the origin solving one of the CDM tensions at galactic scales,
the core-cusp problem.

Fuzzy dark matter (FDM) [6,7] is scalar field dark matter model, m∼ 10−22 eV that takes
the simplest possibility, so the field is only subjected to gravity. The mass is extraordinarily
light so that the wave nature is manifest on galactic scales providing a non-CDM behavior
which leads to a different and rich phenomenology for DM on those scales. On large scales
DM behaves as CDM maintaining the observable successes of CDM on those scales [3].

In this work we go beyond the static solitons by investigating dynamical self-similar so-
lutions. With this, we access to a much deeper understanding of the dynamic processes like
the observed gravitational cooling effect [8, 9]. Moreover, this allow us to obtain dynamical
configurations embedded in the expanding cosmological background and to compare them
with the well-known CDM self-similar solutions [10–12].

2 Equations of motion

The action of FDM is that of a classical scalar fieldφ with just a minimal coupling to gravity [7].
Variation of this action in the nonrelativistic regime, relevant for astrophysical and large-scale
structures, and introducing a complex scalar field ψ [6, 7], leads to the equations of motion
for the complex field, known as the the Schrödinger-Poisson (SP).

We can go from the field picture to the hydrodynamical framework by taking the Madelung
transformation [13] since it facilitates the comparison with the standard CDM scenario. There-
fore, we can describe the system in terms of the curl-free velocity field v⃗, the density field ρ
and the Newtonian potential ΦN. Now, the dynamics is encoded in the continuity and Euler
equation and the Poisson equation for the gravity:

∂ ρ

∂ t
+∇ · (ρ v⃗) = 0 , (1a)

∂ v⃗
∂ t
+ (v⃗ · ∇)v⃗ = −∇

�

ΦN +ΦQ

�

, (1b)

∇2ΦN = 4πρ . (1c)

Note that the Euler equation (1b) appears an extra term, ΦQ, which is the so called quantum
pressure [14–16]:

ΦQ = −
ε2

2

∇2pρ
p
ρ

. (2)

ε mimics ħh in quantum mechanics and it represents the ratio between the de Broglie wave-
length λdB and the size of the system. It encodes the the wavelike effects thus in the limit
ε → 0, we recover the usual continuity and Euler equations, which also describe CDM on
large scales where shell crossing can be neglected.

3 Cosmological self-similar solutions

3.1 Self-similar ansatz

To compute self-similar solutions we look for time-dependent solutions of the following form:

ρ = t−α f
� r

tβ

�

, v = t−δg
� r

tβ

�

, ΦN = t−µh
� r

tβ

�

. (3)
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By substituting these expressions into the equations (1a)-(1c), we find the the exponents
for (3):

β = 1/2 , µ= 1 , α= 2 , δ = 1/2 . (4)

Note that the functions f, g and h must be computed by solving eq. (35)-(36) of [17] .

3.2 Cosmological background

Since we are interested in cosmological self-similar solutions, first, we define the cosmological
background using the Einstein-de Sitter universe, as for CDM. This choice is well motivate
since it is a good description to the matter era when most large-scale structures are formed and
because the scale factor grows as a power law of time, a∝ t2/3, so we are not including any
specific scale that would break the self-similarity. As the background expressions (see eq.(48)
in [17]) are solutions of the continuity, Euler and Poisson (1a)-(1c) and follow the self-similar
form (3) with (4) we can investigate self-similar solutions that correspond to perturbations
around this expanding background.

3.3 Spherical self-similar solutions

We write the density and velocity fields and the gravitational potential as

ρ = ρ̄(1+δ) , v⃗ = ¯⃗v + u⃗ , ΦN = Φ̄N +ϕN , (5)

where δ is the density contrast and u⃗ the peculiar velocity. Using comoving coordinates
x⃗ = r⃗/a and substituting these expressions into the continuity, Euler and Poisson equations
(1a)-(1c), we obtain the usual comoving fluid equations (see equations (50)-(53) in [17]).
Therefore, the spherical self-similar solutions are given by of the following form in agreement
with (3) and (4):

δ(x , t) = δ̂(η) , u(x , t) = ε1/2 t−1/2 û(η) , ϕN(x , t) = εt−1 ϕ̂N(η) , (6)

where we introduced the scaling variable

η=
t1/6 x
ε1/2

=
r
p
εt

, (7)

that includes an additional scaling in ε and is consistent with the self-similar exponents ob-
tained in Sec. 3.1 .

3.4 Overdensities

Applying semi-analytical techniques and solving the closed equation (93) in [17] we can com-
pute self-similar solutions for high densities around the background i.e. nonlinear regime.
In this section we focus only on showing the main results for the nonlinear overdensity case
of δ(0) = 100.

We show in red solid line in Fig.(1) the result of the nonlinear computation for the density
contrast (left panel) and the velocity field (middle panel). To compare, we plot together in
green dashed the result of the same overdensity but using only linear theory, i.e. solving the
linear equation (73) in [17] which properly describes the small linear perturbations around
the background. In this way, we can track the impact of the nonlinear corrections. We can
check that they make the first peak of the density profile narrower and all higher-order peaks
shift towards the center relative to the linear computation. In the velocity field, we can observe
how the oscillations grow and become much sharper in contrast to the linear result. Moreover,
the velocity shows high and narrow positive spikes at the density minima. Therefore, we have
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Figure 1: Overdensity case δ(0) = 100. Left panel: nonlinear density contrast δ̂
(red solid line) and linear density contrast δ̂L (green dashed line). Middle panel:
nonlinear and linear velocity fields. Right panel: Trajectory x(t) of the comoving
radius associated with a fixed mass, as a function of cosmic time t.

a scalar matter flux which is better understood in the right panel of Fig.(1) with the Lagrangian
representation. This figure tracks the trajectory x(t) of the comoving radius of a mass shell
with mass M . The definition of the mass, equation (106) in [17], implicitly gives the trajectory
η(t) that we can easily rewrite in terms of the comoving coordinate x(t) using (7). For the
numerical computation of x(t) we take M = 1,ε = 1. Following the trajectory, starting close
to the origin, inside the central peak, the comoving radius grows very slowly. Then, when the
shell leaves the clump, the trajectory has an intermittent character with well-distinguishable
steps because of the fast accelerations of the velocity spikes found in the velocity plot.

This ejection of matter recalls the gravitational cooling effect observed in numerical simu-
lations. This phenomena is a mechanism that allows the system to relax towards equilibrium
configurations, in spite of the absence of dissipative processes, by ejecting extra matter and
energy to infinity [8,9].

4 High-density asymptotic limit

Since the static soliton is a huge non-linear overdensity, we can study the asymptotic behaviour
of the self-similar solutions in the high-density limit. In this limit the background density
becomes negligible compared to the central density peak.

Figure 2: Asymptotic self-similar (blue solid line) and soliton
(black dashed line) density profiles, normalized to ρ(0) = 1.

The two curves are differ-
ent and the central peak of
the self-similar solution is nar-
rower than the soliton peak.
This is due to the kinetic
terms and because essentially
the soliton balance equation is
different from the self-similar
Bernoulli equation (see eq.(31)
and eq. (64) of [17]). There-
fore, the high density asymp-
totic profile does not relax to-
ward the static soliton profile.
This shows that the conver-
gence toward the soliton core is
not guaranteed in all configura-
tions.
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5 Conclusion

CDM self-similar solutions describe the gravitational collapse of spherical overdense regions.
At early times, a small linear perturbation grows, until it reaches the nonlinear regime. So
transition from the linear regime to the non-linear regime occurs. However, in FDM is not the
case since the amplitude of the linear perturbation remains constant in time [17]. Moreover,
instead of having the familiar gravitational collapse, in FDM we have the gravitational cool-
ing effect. In terms of the characteristic length scale (7), in FDM it grows as

p
t in physical

units but decreases as t−1/6 in comoving units. Therefore, their size grows in physical units
but more slowly than the scale factor, so that they actually shrink in comoving units. This
feature is different from the CDM self-similar solutions that grow both in comoving size and
in mass [10,11].
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