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Abstract

The NEWS-G collaboration is searching for light dark matter using single-electron-
threshold Spherical Proportional Counters (SPCs) filled with light gaseous targets (H,
He, Ne). NEWS-G has built a new 140 cm diameter SPC equipped with a multi-anode
ACHINOS sensor. Robust calibrations with a UV laser and an 37Ar source were per-
formed to characterize the detector response to low energy events and achieve statistical
background rejection. This work presents preliminary results from physics data taken
with methane, leading to world-leading spin-dependent sensitivity under 2 GeV/c2 WIMP
masses.
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1 Introduction

Astrophysical observations, from cosmological to galactic scales, strongly suggest the existence
of invisible Dark Matter in our Universe [1,2]. Weakly Interacting Massive Particles (WIMPs)
are a category of Dark Matter candidates predicted by various extensions to the Standard
Model [3]. The NEWS-G collaboration (New Experiments With Spheres - Gas) uses Spherical
Proportional Counters (SPCs) to search for WIMPs. The kinematic match between light targets,
such as neon or hydrogen, and light WIMPs is exploited to reach sensitivities to masses below
1 GeV/c2, as demonstrated with the SEDINE prototype [4]. SPCs have also been used to test
other physics models, such as solar KK axions [5]. This work describes the preliminary WIMP
constraints obtained with a subset of the physics data taken with CH4 inside the S140, the new
generation SPC detector [6], while at Laboratoire Souterrain de Modane (LSM) [7].

2 S140 detector

SPCs consist of a grounded spherical metal shell filled with gas, with a high voltage (∼ 2000V)
anode in its center. When a particle interacts with the gas, it converts some of its energy into
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Figure 1: Left: S140 inside its lead shield, with water shield under installation, at
LSM. Right: ACHINOS sensor used inside the S140.

ionization, with the resulting electrons drifting towards the central sensor, where their signal is
amplified through an electronic avalanche, allowing sensitivity down to single-electron events.

The S140’s shell, 140 cm in diameter, is made of C10100 copper with a 500µm internal
layer of electroplated copper [8]. Its shielding at LSM comprised a spherical lead shell, and
a water shield replacing the high-density polyethylene planned for operation at SNOLAB [9],
cf. Fig 1. A new multi-anode ACHINOS sensor [10]was used for its stronger electric field in the
drift region. It was operated in dual-channel configuration, to keep only events happening far
from the field-distortions induced by the sensor support rod, as validated by simulations [11,
12]. Detector details can be found in Ref. [6]. Ten days of data were taken with 135mbar of
CH4 at LSM, to exploit the hydrogen sensitivity to WIMP masses down to 0.1GeV/c2.

3 Calibrations

The ionization quenching factor (QF) of protons between 2 and 13 keV in CH4 was measured
with a test SPC at the COMIMAC electron-and-ion generator facility in LPSC Grenoble [13].
The QF down to 510eV was obtained by comparing the literature values of the mean ioniza-
tion energy of CH4 for electron or ion incident particles [14]. Below 510 eV, a logarithmic
extrapolation (QF(EK) = a + b ln(EK), reaching a null value for nuclear recoil energies of
148 eV) was used, conservative compared to expectations from a Lindhard extrapolation.

In situ S140 calibrations included single electron events, generated by shining a 213 nm UV
laser on the internal detector surface through an optical fibre feedthrough. The avalanche gain,
drift and diffusion time of primary electrons were calibrated with one hour of data per day,
following the procedure in Ref. [15]. To generate events uniformly in the gas volume, an 37Ar
source was used, producing X-rays and low-energy electrons with a total energy of 2.8 keV, 270
or 200eV [16,17]. Linearity of the energy response of the detector was verified, and primary
electron attachment, drift and diffusion were parameterized. Together with gain calibrations
performed with the UV laser, combining procedures from Ref. [15] and Ref. [18], the measured
effective mean ionization energy of electronic interactions was 30± 0.15 eV. The Fano factor
values were taken from Ref. [19] and implemented with a COM-Poisson distribution [20].
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PRELIMINARY

Figure 2: Time separation distribution of two-peak events. Left: Laser (green points)
and 37Ar (orange points) calibration data, with corresponding simulation results
(green, orange curves). Right: Physics test data (black points), and best fit (black
line); the green and pink lines show respectively the surface and coincidences contri-
butions. The shaded red distribution shows the 90% confidence-level excluded con-
tribution from a 0.75GeV/c2 WIMP. The shaded grey areas are outside the fit range.

4 Peak counting

At interaction energies under ∼ 200 eVee, producing events with few primary electrons, the
Search function of ROOT’s TSpectrum class [21, 22] is used to identify current spikes on the
anodes with avalanches generated by the arrival of primary electrons. Events are then classi-
fied by the number of peaks founds (energy), and the time separation between first and last
peak (driven by primary electron diffusion, and hence radial position) for events with at least
two peaks. The UV laser calibrations show the adapted TSpectrum Search function finds 60%
of single electron peaks, and distinguishes peaks 8µs apart. Simulations of the time separa-
tion distribution of low energy events coming from either the surface or the gas volume are
in good agreement with those from laser and 37Ar calibrations, respectively (cf. Fig 2). The
distribution for accidental coincidences was validated up to 600µs by looking at high event
rate periods in the physics data. For each peak, data quality cuts based on the rise shape of raw
pulses and on the relative signal between far and near ACHINOS channels were implemented,
leading to ∼ 95% spurious pulse rejection while keeping 77% of laser calibration events. Spu-
rious wide pulses were observed to generate large rates of multi-peak events with short time
separations, so two-peak events with time separations below 20µs were disregarded.

5 Results

Out of ten days of physics data, 37 hours were taken to test the analysis procedure to be applied
to the remaining blind data. 1086 two-peak, 180 three-peak and 131 four-peak events were
recorded. A Profile Likelihood Ratio (PLR) [23] analysis was performed based on the fit of
their time separation distributions, with contributions from surface and volume backgrounds,
accidental coincidences, and WIMP events. The latter was based on the recoil energy spectra
from Ref. [24], including the QF effect and ionization statistics described in Sec. 3.

No significant WIMP signal was observed. The best fit (cf. Fig 2) showed the observed
events came predominantly from surface interactions, plus a strong contribution from acci-
dentals with two peaks. Based on an effective exposure of 0.12kg · day after quality cuts for
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Figure 3: Preliminary spin-dependent WIMP-proton cross-section constraint from
this work (red line), with median (dashed black line) and 1σ (green) and 2σ (yel-
low) sensitivity bands. Also shown are the existing limits from Pico-60 [25], PI-
CASSO [26], LUX [27], PandaX-II [28], CDMS-lite II [29], CRESST-III Li2MoO4 [30]
and LiAlO2 [31] detectors, XENON1T [32], J.I. Collar [33], and Borexino [34].

the test data, preliminary constraints set on the spin-dependent WIMP-proton cross-section are
world-leading in the 0.2−2GeV/c2 mass range, by up to three orders of magnitude (cf. Fig 3).
The remaining data, with three times more statistics, will be unblinded to produce final results
after thorough review of the behaviour of the PLR in the observed background conditions.

6 Outlook

The S140 detector is currently installed at SNOLAB. Its internal surface has been etched to
reduce backgrounds from impurities in the internal surface of the detector, which is expected
to improve results for future physics runs taken. Mixing neon with methane will also in-
crease the sensitivity to low energy nuclear recoils, based on SRIM [35] simulations of the
QF. Beyond the current S140 detector, the Electroplated CUprum Manufacturing Experiment
(ECuME) project aims to electroform a complete copper SPC for unparalleled detector radiop-
urity [8, 36]. A 30cm demonstrator is under construction, with the ultimate goal being the
installation in SNOLAB of an electroforming facility capable of forming a 140cm SPC directly
underground. Beyond ECuME, the proposed DarkSphere project will improve results even
further with a 300 cm fully electroformed detector at Boulby Underground Laboratory. Ex-
posure will be increased through its larger size and by running at pressures up to 5bar, and
backgrounds reduced by replacing the lead shield with a water shield.

7 Conclusion

The new S140 detector equipped with an ACHINOS sensor was operated while at LSM, pro-
ducing ten days of physics data with 135 mbar of CH4. Thanks to new calibration techniques
combining a UV laser and 37Ar, a detailed understanding of the detector was demonstrated,
allowing analysis of data down to two-primary-electron events. The preliminary results based
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on 0.12kg · day of data show world-leading constraints on the spin-dependent WIMP-proton
cross-section for WIMP masses between 0.2 and 2 GeV/c2. Future data with the S140 at SNO-
LAB, and with the ECUME and DarkSphere projects, will improve even further on these results.
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