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Abstract

The CALorimetric Electron Telescope, CALET, has been measuring high-energy cosmic
rays on the International Space Station since October 13, 2015. The scientific objec-
tives addressed by the mission are to search for possible nearby sources of high-energy
electrons and potential signatures of dark matter, and to investigate the details of galac-
tic cosmic-ray acceleration and propagation. The calorimetric instrument, which is 30
radiation lengths or 1.3 proton interaction lengths thick with fine imaging capability,
is optimized to measure cosmic-ray electrons by achieving large proton rejection and
excellent energy resolution well into the TeV region. In addition, very wide dynamic
range of energy measurement and individual charge identification capability enable us
to measure proton and nuclei spectra from a few tens GeV to a PeV scale. Nearly 20 mil-
lion cosmic-ray shower events over 10 GeV per month are triggered and the continuous
observation has been kept without any major interruption since the start of operation.
Using the data obtained over 6.5 years of operation, we will present a brief summary
of the CALET observation including electron spectrum, and proton and nuclei spectra as
well as the performance study on orbit with MC simulations.
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1 Introduction

The CALorimetric Electron Telescope (CALET), developed and operated by Japan in collab-
oration with Italy and the United States, is a high-energy astroparticle physics experiment
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installed on the International Space Station (ISS) [1]. It was launched on August 19, 2015,
by a Japanese carrier H-IIB, delivered to the ISS by the HTV-5 Transfer Vehicle, and installed
on the Japanese Experiment Module-Exposed Facility (JEM-EF).

The CALET mission addresses several outstanding questions of high-energy astroparticle
physics including the origin of cosmic rays (CR), the possible presence of nearby CR sources,
the acceleration and propagation of primary and secondary elements in the galaxy, and the sig-
nature of dark matter. The detector of CALET is optimized for high precision measurements of
the all-electron (electron plus positron) spectrum in the range from 1 GeV to 20 TeV. Given the
excellent energy resolution of CALET for electrons, a detailed study of the spectral shape can
reveal the presence of nearby sources of acceleration as well as possible indirect signatures of
dark matter. With the capability of identification of the individual cosmic-ray elements, CALET
is also carrying out direct measurements of the spectra and relative abundance of cosmic-ray
nuclei from proton to nickel in the energy range from a few 10’s GeV to a PeV scale. The abun-
dances of trans-iron elements up to Z = 40 are studied with a dedicated program of long-term
observations.

2 The CALET instrument

CALET is an all-calorimetric instrument, with a total vertical thickness equivalent to 30 radi-
ation lengths(X0) or 1.3 proton interaction lengths (λI), preceded by a charge identification
system. The energy measurement relies on two independent calorimeters: a fine-grained pre-
shower IMaging Calorimeter (IMC), followed by a Total AbSorption Calorimeter (TASC). To
identify the individual chemical elements, a CHarge Detector (CHD) is placed at the top of
the instrument. A schematic overview of the CALET instrument is presented in Fig. 1 with a
simulated 1 TeV electron shower. A TeV electromagnetic shower can be fully contained in the
detector thanks to the thick calorimeter, and the capability of shower imaging provides us to
precisely identify electrons from hadrons.

The CHD has been designed to measure the charge of incident particles. It is made of
a double-layered, segmented, plastic scintillator array. Each layer comprises 14 plastic scin-
tillator paddles, with dimensions 450 mm(L)×32 mm(L)×10 mm(H). The scintillation light
generated in each paddle is collected and read out by one photo-multiplier tube (PMT). The
CHD and related front-end electronics have been designed to provide particle identification
over a large dynamic range for charges from Z = 1 to 40. The charge resolution is 0.15e for
carbon and 0.3e for iron.

The IMC measures the initial shower development with a fine granularity by using 1 mm
square cross-section scintillating fibers (SciFi) individually read out by Multi-Anode PMT. It
consists of 7 layers of tungsten plates each separated by 2 layers of SciFi belts arranged in
the X and Y directions and capped by an additional X , Y SciFi layer pair. Each SciFi belt is
assembled with 448 fibers. The dimensions of the SciFi layers are 448 mm(L)×448 mm(W).
The total thickness of the IMC is equivalent to 3X0. The thickness of the tungsten plates is
0.2 X0 for the first 5 layers and 1.0 X0 for the last 2 layers.

The TASC is designed to measure the total energy of the incident particle and discriminate
the electromagnetic from hadronic showers. It is composed of 12 layers, each consisting of 16
lead tungstate (PWO) logs, each 326 mm (L)× 19 mm(W)× 20 mm(H). Layers are arranged
alternatively in X and Y to provide a 3D reconstruction of the showers. The total thickness of
the TASC is 27X0 and 1.2λI at normal incidence. Each PWO log of the top layer is read out by
a PMT to generate a trigger signal. The other layers are read out by Hybrid packages of silicon
Avalanche PhotoDiode (APD) and silicon PhotoDiode (PD). The readout front-end system of
each pair of APD/PD sensors is configured with a Charge Sensitive Amplifier (CSA) and a pulse
shaping amplifier with dual gain. The readout system provides a dynamic range exceeding
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6 orders of magnitude which allows each log to measure signals from 0.5 MIPs (Minimum
Ionizing Particles to 106 MIPs, which corresponds to the energy deposit by a photon-induced
1 PeV shower.

3 Onboard operations and calibrations

The scientific operation started in October of 2015. Since then, the total observation time of
CALET is 2,392 days, and more than 1.57 billion events are observed in high energy (HE)
trigger mode as of April 30, 2022. The live-time fraction is over 85% for this period.

Energy calibrations of each channel of CHD, IMC, and TASC are performed with cosmic-ray
proton and helium events [2]. With their minimum ionizing particles, raw signals are corrected
for light output non-uniformity, gain difference among the channels, position and temperature
dependence, as well as temporal gain variations. The four gain ranges of each TASC channel
are calibrated with flight data and linked together to provide a seamless response spanning
more than six orders of magnitude and allowing observations from MIP to PeV showers. The
whole dynamic range of each channel in TASC was calibrated by UV laser irradiation on ground
before the flight. The accuracy of the Monte Carlo simulations was tested by a several beam
tests at CERN-SPS.

4 Results

4.1 All-electron spectrum

The precise measurement of the high-energy electrons provides a unique probe of nearby
cosmic-ray accelerators [3]. In addition, the prominent increase of the positron fraction over
10 GeV established by PAMELA [4] and AMS-02 [5] may require a primary source component
for positrons in addition to the generally accepted secondary origin. Candidates for such pri-
mary sources of astrophysical and dark matter are discussed. Since these primary sources emit
electron-positron pairs, it is expected that the all-electron spectrum would exhibit a spectral
feature, near the highest energy range of the primary component.

CALET is optimized for the observation of high-energy electrons with the 30 X0 thick and
well-segmented calorimeter, which provides an excellent energy resolution, 2% above 20 GeV,
and less proton contamination. Figure 2 shows the updated result of the electron spectrum in
11 GeV to 4.8 TeV based on 1,815 days of flight data corrected with the high-energy shower
trigger, which is 2.3 times larger in statistics than the 2nd published paper [6]. The error bars
along the horizontal and vertical axes indicate bin width and statistical errors, respectively.
The gray band represents the quadratic sum of statistical and systematic errors. Extensive
studies on the systematic uncertainties have been performed.

We noticed that CALET’s spectrum is well consistent with AMS-02 [7] below 1 TeV, while
they use different detection principles, calorimeter versus magnetic spectrometer, and thus
their agreement is important factual evidence. On the other hand, the other group of mea-
surements in space, Fermi-LAT [8] and DAMPE [9], show higher spectra, which might suggest
the presence of unknown systematic errors. CALET also has observed flux suppression that is
consistent with DAMPE within errors above 1 TeV. In addition, no peak-like structure at 1.4 TeV
reported by DAMPE was found in CALET data, irrespective of energy binning.

4.2 Proton spectrum

The proton spectrum by CALET was published in 2019 [10] from 10 GeV to 10 TeV based
on the 1,054 days of operations. Thanks to the wide dynamic range to measure the energy,
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Figure 1: Schematic view of CALET,
and 1 TeV simulated electron event is
overwritten.

Figure 2: All-electron spectrum mea-
sured by CALET, where the gray band
indicates the quadrature sum of statis-
tical and systematic errors. Also plot-
ted are direct measurements in space
[7–9] for comparison.

Figure 3: A proton spectrum mea-
sured by CALET [11] compared with
other results [12–14]. The gray band
shows the statistical and systematic
uncertainties for CALET.

Figure 4: A preliminary helium spec-
trum measured by CALET compared
with other results [15–17]. The gray
band shows the statistical and system-
atic uncertainties for CALET.

CALET covers the wide energy range and confirmed the spectral hardening around 500 GeV.
After that, we updated the proton spectrum with higher statistics for 2,272 days and extended
the spectrum to 60 TeV [11] as shown in Fig. 3. The low energy part of the proton spectrum
below 1 TeV is consistent with AMS-02 [12] and DAMPE [13]. The high energy part of the
spectrum above 1 TeV is systematically lower than that of DAMPE, though the difference is
within the errors. The spectral hardening break energy observed in CALET is consistent with
that of AMS-02 and DAMPE within the errors. Moreover, the spectral softening break energy
observed in CALET is consistent with that of DAMPE. These spectral hardening and softening
observations contribute to modeling the mechanism of cosmic-ray acceleration and propaga-
tion in the Galaxy.

4.3 Preliminary helium spectrum

Figure 4 shows the preliminary spectrum of helium with CALET in 1,815 days of operation
covering an interval of kinetic energy per particle from 50 GeV to 50 TeV [18], compared
with previous observations [15–17]. A progressive hardening up to the multi-TeV region was
observed, and the fit in 80 GeV to 20 TeV with a smoothly broken power-law function [16] gives
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power law index, γ= −2.71±0.02,∆γ= 0.25±0.05 and break energy, E0 = 1295±252 GeV.
These preliminary results are consistent with DAMPE [17] within the errors.

4.4 Carbon and oxygen spectra

Figure 5: CALET (a) carbon and (b)
oxygen spectra multiplied by E−2.7

and (c) ratio of carbon to oxygen
fluxes. Error bars represent the
statistical uncertainty only, the gray
band indicates the quadrature sum
of statistics and systematic errors.
Also plotted are other direct measure-
ments [19–26].

The energy spectra of carbon and oxygen and their
flux ratio measured with CALET based on the 1,480
days of operation in an energy range from 10 GeV/n
to 2.2 TeV/n are shown in Fig. 5. The gray band in-
decates the quadratic sum of statistical and systematic
errors [27]. CALET spectra are compared with other
direct measurements [19–26]. The carbon spectrum
is well consistent with PAMELA and most previous ex-
periments. Both carbon and oxygen spectra between
CALET and AMS-02 differ in the absolute normaliza-
tion, which is lower for CALET by about 27%. They,
however, have very similar shapes as indicated by the
very consistent measurements of the carbon-to-oxygen
ratio. Their spectra can fit with a Double Power-Law
(DPL) function:

Φ(E) =

¨

C
� E

GeV

�γ
, E ≤ E0 ,

C
� E

GeV

�γ� E
E0

�∆γ
, E > E0 ,

where C is the normalization factor, γ the spectral in-
dex, and∆γ the spectral index change above the tran-
sition energy E0. The effect of systematic uncertainties
in the measurement of the energy spectrum is modeled
in the χ2 minimization function with a set of 6 nui-
sance parameters. The DPL fit to the carbon spectrum
yields a spectral index γ= −2.663±0.014 at energies
below the transition region E0 = (215 ± 54) GeV/n
and a spectral index increase ∆γ = 0.166 ± 0.042
above, with χ2/d.o.f= 9.0/8. For oxygen, the fit
yields γ = −2.637 ± 0.009, E0 = (264 ± 53) GeV/n,
∆γ= 0.158± 0.053, with χ2/d.o.f= 3.0/8.

4.5 Iron and nickel spectra

Figure 6 shows the iron spectrum in 50 GeV/n to 2.0 TeV/n based on 1,613 days of operations
[28]. CALET and AMS-02 [29] iron spectra have a very similar shape and comparable errors,
but differ in the absolute normalization of the flux ∼20% like those of carbon and oxygen.
Figure 7 shows the nickel spectrum in 8.8 GeV/n to 240 GeV/n [30]. Both CALET iron and
nickel spectra are consistent with the hypothesis of a Single Power-Law (SPL) function with a
spectral index γ= −2.60±0.03 above 50 GeV/n for iron and γ= −2.51±0.07 above 20 GeV/n
for nickel. The uncertainties given by the present statistics and systematics do not allow us
to draw a significant conclusion on a possible deviation from a single power law. The ratio of
nickel to iron shows the constant to the energy with 0.061 ± 0.001 within the experimental
accuracy. This suggests a similar acceleration and propagation behavior as expected from the
less difference in atomic number and weight between Fe and Ni nuclei.
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Figure 6: The iron spectrum mea-
sured by CALET multiplied by E−2.6 as
a function of kinetic energy per nu-
cleon. Also plotted are other direct
measurements [20–24,29,31–33].

Figure 7: The nickel spectrum mea-
sured by CALET multiplied by E−2.6 as
a function of kinetic energy per nu-
cleon. Also plotted are other direct
measurements [20,34–36].
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Figure 8: Preliminary energy spec-
trum of boron as a function of kinetic
energy per nucleon with CALET com-
pared with PAMELA [25] and AMS-02
[38].
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Figure 9: Preliminary result of the
boron-to-carbon ratio as a function of
kinetic energy with CALET compared
with previous observations [20, 25,
38–42].

4.6 Preliminary boron spectrum and B/C ratio

Figure 8 shows the preliminary energy spectrum of boron from 16 GeV/n to 2.2 TeV/n [37]
compared with PAMELA [25] and AMS-02 [38]. The isotope composition is assumed as
11B/(10B+11B)= 0.7. CALET boron spectrum is consistent with PAMELA but lower than AMS-
02 like the cases of C, O, and Fe spectra. Figure 9 show the preliminary result of B/C ratio from
16 GeV/n to 2.2 TeV/n [37] compared with the previous observations [20, 25, 38–42]. The
present result of the B/C ratio can be fitted with a power law function (B/C)= AE−δ, where
A is a constant normalization factor, the spectral indices are δ = 0.406± 0.039 in 25 GeV/n
withχ2/ndf= 0.30/3, and δ = 0.366± 0.064 in 100 GeV/n - 2.2 TeV/n withχ2/ndf= 1.2/7.

4.7 Further CALET observations

In addition to the electrons and nuclei spectra measurements, CALET has been measuring
ultra-heavy cosmic-rays (UHCR) with charges 30 ≦ Z ≦ 40, which are ∼ 105 less abundant
than iron. About five years of UHCR observations by CALET collected a data set comparable
to that so far collected by the balloon-borne SuperTIGER instrument. Preliminary results of
the relative abundances of UHCRs to iron presented at the conference [43] are in reasonable
agreement.
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CALET observation of low-energy CRs has been successfully performed with a Low-Energy
Electron (LEE) shower trigger mode activated at the high geomagnetic latitude [44]. The
count rates of electrons and protons measured by CALET during the solar minimum have
reached their maximum, which is comparable to or exceeding the maximum flux observed with
PAMELA in the previous solar minimum period. It was also found the modulation amplitude
of electron count rate is clearly larger than that of proton count rate, being consistent with the
expected charge sign dependence of solar modulation [44].

Moreover, CALET is sensitive to gamma rays from 1 GeV to 10 TeV [45, 46]. Transient
events such as gamma-ray bursts in the hard X-ray and soft gamma-ray band have been ob-
served by the CALET gamma-ray burst monitor and the calorimeter. The follow-up campaign
for the search for electromagnetic counterparts of the gravitational wave events has been also
participated [47].

5 Summary

CALET instrument performance on the ISS has been very stable since the start of the operation
on October 13, 2015. Careful calibrations using non-interacting protons and helium events
have been successfully carried out, and the linearity of the energy measurements up to 106

MIPs was established based on observed events.
At this conference, CALET presented various results including the electron and positron

spectrum up to 4.8 TeV [48], a preliminary update of the proton spectrum to 60 TeV [49],
and a preliminary helium spectrum to 50 TeV [18]. The spectra of carbon and oxygen and
their ratio to 2.2 TeV/n were published in [27]. The iron spectrum to 2.0 TeV/n and nickel
spectrum to 240 GeV/n were also published in [28, 30]. Preliminary results of the boron
spectrum and the B/C ratio were also presented [37]. In addition, CALET has the potential
to study the UHCR, as well as gamma-ray measurements, GRB observations, searches of GW
event counterparts, DM searches, and space weather observations.

CALET observation has been carried out over six years and was approved to be extended
until the end of 2024 (at least). Improved statistics and refinement of the analysis with addi-
tional data will allow to extend the measurements at higher energies and improve the spectral
analysis, which will contribute to a further understanding of cosmic rays.
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