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Abstract

Dominant shapes naturally emerge in atomic nuclei from first principles, thereby es-
tablishing the shape-preserving symplectic Sp(3,R) symmetry as remarkably ubiquitous
and almost perfect symmetry in nuclei. We discuss the critical role of this emergent
symmetry in enabling machine-learning descriptions of heavy nuclei, ab initio modeling
of α clustering and collectivity, as well as tests of beyond-the-standard-model physics.
In addition, the Sp(3,R) and SU(3) symmetries provide relevant degrees of freedom
that underpin the ab initio symmetry-adapted no-core shell model with the remarkable
capability of reaching nuclei and reaction fragments beyond the lightest and close-to-
spherical species.
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1 Introduction

Dominant shapes, often very few in number, naturally emerge in atomic nuclei.1 This remark-
able result has been recently shown by large-scale nuclear simulations from first principles [2].
Indeed, each nuclear shape respects an exact symmetry, namely, the symplectic Sp(3,R) sym-
metry [3, 4]. Thereby the outcome of these simulations establishes the symplectic Sp(3,R)
symmetry as remarkably ubiquitous and almost perfect symmetry in nuclei up through the
calcium region (anticipated to hold even stronger in heavy nuclei [5]). This outcome also
exposes for the first time the fundamental role of the Sp(3,R) symmetry and suggests that its
origin is rooted in the strong nuclear force, in the low-energy regime.

This builds upon a decades-long research, starting with the pivotal work of Draayer [4,6–8]
and that of Rowe and Rosensteel [3, 5, 9, 10], who have successfully harnessed group theory
as a powerful tool for understanding and computing the intricate structure of nuclei. This
pioneering work has been instrumental in designing the theory that underpins many highly
ordered patterns unveiled amidst the large body of experimental data [11–13]. In addition, it
has explained phenomena observed in energy spectra, E2 transitions and deformation, giant
resonances (GR), scissor modes and M1 transitions, electron scattering form factors, as well
as the interplay of pairing with collectivity. The new developments and insights have provided
the critical structure raised upon the very foundation laid by Elliott [14–16] and Hecht [17,18],
and opened the path for large-scale calculations feasible today on supercomputers. And while
these earlier algebraic models have been very successful in explaining dominant nuclear pat-
terns, they have assumed symmetry-based approximations and have often neglected symmetry
mixing. This establishes Sp(3,R) as an effective symmetry2 for nuclei, which may or may not be
badly broken in realistic calculations. It is then imperative to probe if this symmetry naturally
arises within an ab initio framework, which will, in turn, establish its fundamental role.

Indeed, within an ab initio framework without a priori symmetry assumptions, the
symmetry-adapted no-core shell model (SA-NCSM) [8, 20, 21] with chiral effective field the-
ory (EFT) interactions [22–24] has recently confirmed the goodness of the symplectic Sp(3,R)
symmetry that is only slightly broken. With no parameters to adjust, the SA-NCSM is capable
then not only to explain but also to predict the emergence of nuclear shapes and collectiv-
ity across nuclei, even in close-to-spherical nuclear states without any recognizable rotational
properties.

Within an ab initio framework, the emergent symmetries play a critical role, as they can
inform relevant degrees of freedom. In particular, a symmetry-adapted many-body basis can
be employed, as in the SA-NCSM, thereby providing solutions for drastically reduced sizes of
the spaces in which particles reside (referred to as “model spaces”) compared to the corre-
sponding ultra-large model spaces, without compromising the accuracy of results for various
nuclear observables. By exploiting symplectic symmetry, ab initio descriptions of spherical and

1This publication reuses some material from [1] under the terms of its CC BY license.
2A familiar example for an effective symmetry is SU(3). While the Elliott model with a single SU(3) irrep

explains ground-state rotational states in deformed nuclei, the SU(3) symmetry is, in general, largely mixed, mainly
due to the spin-orbit interaction (nonetheless, SU(3) has been shown to be an excellent quasi-dynamical symmetry,
that is, each rotational state has almost the same SU(3) content [19]).
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deformed nuclei up through the calcium region are now possible without the use of effective
charges [8, 21, 25–27]. This allows the SA-NCSM to accommodate even larger model spaces
and to reach heavier nuclei, such as 20Ne [2], 21Mg [28], 22Mg [29], 28Mg [30], as well as
32Ne and 48Ti [31].

In this paper, we briefly outline the SU(3) and Sp(3,R) schemes utilized by the ab initio SA-
NCSM. We overview the critical role of the emergent Sp(3,R) symmetry in enabling machine-
learning descriptions of heavy nuclei [32], ab initio modeling of α clustering and collectivity,
along with tests of beyond-the-standard-model physics [33]. In addition, we show that with
the help of the SA-NCSM, which expands ab initio applications up to medium-mass nuclei
by using the dominant symmetry of nuclear dynamics, one can provide solutions to reaction
processes in this region, with a focus on elastic neutron scattering.

2 Emergent symmetries in nuclei: Sp(3,R) and SU(3)

2.1 SU(3) scheme

It is well known that SU(3) [6,14,18,34,35] is the symmetry group of the spherical harmonic
oscillator (HO) that underpins the valence-shell model and the valence-shell SU(3) (Elliott)
model [14–16] (for technical details of SU(3), see Ref. [36]). The Elliott model has been
shown to naturally describe rotations of a deformed nucleus without the need for breaking
rotational symmetry. But even beyond the valence shell, the SU(3) scheme provides a classifi-
cation of the complete shell-model space in multiple shells, and is related to the LS-coupling
and j j-coupling schemes via a unitary transformation. It divides the space into basis states
of definite (λµ) quantum numbers of SU(3) that are linked to the intrinsic quadrupole defor-
mation according to the established mapping [37–39]. For example, the simplest cases, (0 0),
(λ0), and (0µ), describe spherical, prolate, and oblate deformation, respectively,3 while a gen-
eral nuclear state is typically a superposition of several hundred various triaxially deformed
configurations. Note that, in this respect, basis states can have little to no deformation, and,
e.g., about 60% of the ground state of the closed-shell 16O is described by a single SU(3) basis
state, the spherical (00).

Specifically, in the SU(3) scheme, in place of the spherical quantum numbers |ηlml〉, one
can consider the single-particle HO basis

�

�ηzηxηy

�

, the HO quanta in the three Cartesian
directions, z, x , and y , with ηx + ηy + ηz = η (η = 0,1, 2, . . . for s, p, sd, ... shells).
For a given HO major shell, the complete shell-model space is then specified by all distin-
guishable distributions of ηz ,ηx and ηy . E.g., for η = 2, there are 6 different distributions,
(ηz ,ηx ,ηy) = (2,0, 0), (1,1, 0), (1,0, 1), (0, 2,0), (0, 1,1) and (0, 0,2). The number of these
configurations is Ωη = (η+ 1)(η+ 2)/2 (spatial degeneracy) and the associated symmetry is
described by the U(Ωη) unitary group. Each of these (ηz ,ηx ,ηy) configurations can be either
unoccupied or has maximum of two particles with spins ↑↓.

As a simple example for an SU(3)-scheme basis state, consider A = 2 protons in the sd
shell (η = 2) with a particle in the (2,0, 0) level with spin ↑ and another in the (1,1, 0) level
with spin ↑. The total number of quanta in each direction is (ηtot

z ,ηtot
x ,ηtot

y , ) = (3, 1,0), or
equivalently, ηtot(λµ) = 4(21), where ηtot = ηtot

x + η
tot
y + η

tot
z , together with λ = ηtot

z − η
tot
x

and µ = ηtot
x − η

tot
y labeling an SU(3) irrep, in addition to the total intrinsic spin and its pro-

jection SMS . For given (λµ), the quantum numbers κ, L and ML are given by Elliott [14,15],
according to the SU(3)

κ
⊃ SO(3)L⊃SO(2)ML

, where the label κ distinguishes multiple occur-

3Following this mapping, quadrupole moments of (0 0), (λ0), and (0µ) configurations – in a simple classical
analogy to rotating spherical, prolate, and oblate spheroids in the lab frame [40] – are zero, negative, and positive,
respectively.
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rences of the same orbital angular momentum L in the parent irrep (λµ). For our exam-
ple, (λµ) = (21) with κ = 1, L = 1,2, 3, and ML = −L,−L + 1, . . . , L. Hence, the set
{ηA(λµ)κ(LS)J M} completely labels a 2-proton SU(3)-scheme basis state (with ηtot = Aη). A
basis state in this scheme for a 2-particle system is given by, {a†

(η0)stz
×a†
(η′0)s′ t ′z

}(λµ)κ(LS)J M |0〉,

which is an SU(3)-coupled product, provided that a† is a proper SU(3) tensor; incidentally, the
SU(3) tensor a† of rank (λµ) = (η0) coincides with the familiar particle creation operator,
a†
(η0)lmsσtz

≡ a†
ηlmsσtz

, while the particle annihilation SU(3) tensor of rank (λµ) = (0η) is

given as ã(0η)l−ms−σtz
= (−1)η+l−m+s−σaηlmsσtz

. Note that for η= η′ = 2, e.g., there are only
a few 2-proton configurations (λµ) = (4 0) with L = 0,2, 4, (21) with L = 1, 2,3, and (02)
with L = 0,2. Furthermore, these basis states are related to LS-coupled basis states (similarly,
to j j-coupled basis states) via a simple unitary transformation,

n

a†
(η0)stz

× a†
(η′0)s′ t ′z

o(λµ)κ(LS)J M
|0〉=
∑

l,l ′
〈(η0)l; (η′0)l ′∥(λµ)κL〉{a†

ηlstz
× a†

η′ l ′s′ t ′z
}(LS)J M |0〉 , (1)

where 〈. . . ; . . .∥ . . . 〉 is the SU(3) analog of the familiar reduced Clebsch-Gordan coefficient
[note that there is no dependence on the particle orbital angular momenta, l and l ′, in the
SU(3)-scheme basis states].

An important feature of the SU(3) scheme is that all possible configurations within a ma-
jor HO shell η (for protons or neutrons) are not constructed using the tedious procedure of
coupling of creation operators referenced above, but are readily available based on the U(Ωη)
unitary group of the many-body three-dimensional HO. In particular, the basis construction is
implemented according to the reduction [41]

U(Ωη) × SU(2)
�

f1, f2, . . . fΩη
�

Sη
∪ αη

SU(3)
(ληµη)

(2)

with SU(3)(λη µη)
κη
⊃ SO(3)Lη⊃SO(2)MLη

[14, 15], where a multiplicity index αη distinguishes
multiple occurrences of an SU(3) irrep (ληµη) in a given U(Ωη) irrep labeled by Young
tableaux, [f] = [ f1, f2, . . . , fΩη], with f1 ≥ f2 ≥ · · · ≥ fΩη and fi = 0 (unoccupied), 1 (oc-
cupied by a particle), or 2 (occupied by 2 particles of spins ↑↓). An illustrative example for 4
particles in the p f shell (η= 3) is shown in Table 1.

2.2 Sp(3,R) scheme

The key role of deformation in nuclei and the coexistence of low-lying quantum states in a sin-
gle nucleus characterized by configurations with different quadrupole moments [11]makes the
quadrupole moment a dominant fundamental property of the nucleus. Hence, the quadrupole
moment Q (or deformation) and the monopole moment r2 (or “size” of the nucleus), along
with nuclear masses, establishes the energy scale of the nuclear problem. Indeed, the nuclear
monopole and quadrupole moments underpin the essence of symplectic Sp(3,R) symmetry.

Specifically, for A particles in three-dimensional space, the complete basis for the shell
model is described by Sp(3A,R)×U(4) [10], where Sp(3A,R) is the group of all linear canon-
ical transformations of the 3A-particle phase space and Wigner’s supermultiplet group U(4)
describes the complementary spin-isospin space. A complete translationally invariant shell-
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Table 1: SU(3)×SU(2)S configurations for 4 protons (neutrons) in the p f shell (η= 3
with Ωη = 10). Note that a spatial symmetry represented by a Young tableau
�

f1, . . . , fΩη
�

is uniquely determined by its complementary spin symmetry of a given
intrinsic spin Sη (conjugate Young tableaux) ensuring the overall antisymmetriza-
tion of each U(Ωη)×SU(2)Sη configuration with respect to spatial and spin degrees
of freedom (d.o.f.) [41].

Spatial d.o.f. Spin d.o.f.
U(10) ⊃ SU(3) SU(2)
[ f1 f2 . . . f10] (λµ) S

(82), (7 1), (44)2, (52), (0 6), (60), (33)

[22] (14), (4 1), (22)2, (11) S = 0

(90), (6 3), (71), (44), (2 5), (52)2, (33)2

[212] (14)2, (41)2, (22), (0 3), (30)2, (11) S = 1

(52), (0 6), (33), (22), (3 0)

[14] S = 2

model basis is classified according to (see, e.g., [5,10]),

Sp(3(A− 1),R) × U(4)
∪ ∪

Sp(3,R)×O(A− 1) SU(2)S × SU(2)T .
(3)

The Sp(3,R) scheme utilizes the symplectic group Sp(3,R). It consists of all particle-
independent linear canonical transformations of the single-particle phase-space observables,
the positions r⃗i and momenta p⃗i (with particle index i = 1, . . . , A and spacial directions
α,β = x , y, z)

r ′iα =
∑

β

Aαβ riβ + Bαβ piβ , (4)

p′iα =
∑

β

Cαβ riβ + Dαβ piβ , (5)

that preserve the Heisenberg commutation relations [riα, p jβ] = iħhδi jδαβ [5, 8, 42]. Gen-
erators of these transformations, symbolically denoted as matrices A, B, C, and D, are con-
structed as “quadratic coordinates” in phase space, r⃗i and p⃗i , and, most importantly, sum
over all the particles and act on the space orientation. Hence, the generators include phys-

ically relevant operators: the total kinetic energy ( p2

2 =
1
2

∑

i p⃗i · p⃗i), the monopole moment
(r2 =
∑

i r⃗i · r⃗i), the quadrupole moment (Q2M =
p

16π/5
∑

i r2
i Y2M (r̂i)), the orbital angular

momentum

�

L⃗ =
∑

i

r⃗i × p⃗i

�

, and the many-body harmonic oscillator Hamiltonian
�

H0 =
p2

2
+

r2

2

�

.
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In addition, other generators describe multi-shell collective vibrations and vorticity degrees of
freedom for a description from irrotational to rigid rotor flows.

On the contrary, the generators of the complementary O(A) sum over the three spatial
directions and act on the particle index, with a growing complexity with increasing parti-
cle number. One can then organize the A-particle model space according to the dual group
O(A−1), with O(A) ⊃ O(A−1) ⊃ SA. The O(A) is the group of orthogonal transformations that
act on the “particle-index” space (transformations of nucleon coordinates, riα→

∑A
j=1 r jαPji ,

that leave the O(A) scalars rα · rβ =
∑A

i=1 riαriβ invariant for α,β = x , y, z). This scheme is
reviewed in detail in Refs. [5, 10]. O(A− 1) is the subgroup of O(A) which leaves center-of-
mass coordinates invariant (note that center-of-mass coordinates are symmetric with respect
to nucleon indices and, therefore, invariant under SA permutations) and has as a subgroup the
permutation group SA, which permutes the spatial coordinates of a system of A particles.

The Sp(3,R) scheme utilizes an important group reduction to classify many-particle basis
states |σnρωκLM〉 of a symplectic irrep,

Sp(3,R) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
σ nρ ω κ L M

(6)

where σ ≡ Nσ (λσ µσ) labels the Sp(3,R) irrep, n ≡ Nn (λnµn), ω ≡ N (λωµω), and
N = Nσ+Nn is the total number of HO quanta (ρ and κ are multiplicity labels) [5]. The rela-
tion of these symplectic basis states to M -scheme states of the NCSM is provided in Ref. [43].
Importantly, a single-particle Sp(3,R) irrep spans all positive-parity (or negative-parity) states
for a particle in a three-dimensional spherical or triaxial (deformed) harmonic oscillator.

The translationally invariant (intrinsic) symplectic Sp(3,R) generators can be written as
SU(3) tensor operators in terms of the harmonic oscillator raising, b†(10)

iα = 1p
2
(riα − ipiα),

and lowering b(0 1) dimensionless operators (with r and p the laboratory-frame position and
momentum coordinates and α= 1,2, 3 for the three spatial directions),

A(20)
LM =

1
p

2

A
∑

i=1

{b†
i × b†

i }
(20)
LM −

1
p

2A

A
∑

s,t=1

{b†
s × b†

t }
(2 0)
LM , (7)

C (11)
LM =

p
2

A
∑

i=1

{b†
i × bi}

(11)
LM −

p
2

A

A
∑

s,t=1

{b†
s × bt}

(11)
LM ,

H(00)
00 =

p
3
∑

i

{b†
i × bi}

(00)
00 −

p
3

A

∑

s,t

{b†
s × bt}

(00)
00 +

3
2
(A− 1) , (8)

together with B(02)
LM = (−)L−M (A(20)

L−M )
† (L = 0, 2), where the sums run over all A particles of

the system. Equivalently, the symplectic generators, being one-body-plus-two-body operators
can be expressed in terms of the fermion creation operator a†

(η0) and its SU(3)-conjugate an-
nihilation operator, ã(0η). This is achieved by using the known matrix elements of the position

and momentum operators in a HO basis, and hence, e.g., the first sum of A(2 0)
LM in Eq. (7) be-

comes,
∑

η

Ç

(η+1)(η+2)(η+3)(η+4)
12

¦

a†
(η+20) × ã(0η)
©(2 0)

LM
[44]. Note that this operator describes

excitations of a nucleon from the η shell to the η + 2 shell, which corresponds to creating
two single-particle HO excitation quanta, as manifested in the first term of Eq. (7). The eight
0ħhΩ operators C (11)

LM (L= 1,2) generate the SU(3) subgroup of Sp(3,R). They realize the angu-

lar momentum operator (dimensionless), L1M = C (1 1)
1M , and the Elliott “algebraic” quadrupole

moment tensor Qa
2M =
p

3C (11)
2M .

The many-body basis states of an Sp(3,R) irrep are built over a bandhead |σ〉 (defined by
the usual requirement that the symplectic lowering operators B(02)

LM annihilate it) by 2ħhΩ 1p-

1h monopole or quadrupole excitations, realized by the first term in A(2 0)
LM of Eq. (7), together
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with a smaller 2ħhΩ 2p-2h correction for eliminating the spurious center-of-mass (CM) motion,
realized by the second term in A(20)

LM :

|σnρωκ(LSσ)J M〉=
∑

ML MS

〈LML; SσMS| J M〉{{A(2 0)×A(20) · · ·×A(2 0)}n×|σ; SσMS〉}
ρω
κLML

. (9)

States within a symplectic irrep have the same spin value, which are given by the spin Sσ
of the bandhead |σ; Sσ〉. Symplectic basis states span the entire shell-mode space. A com-
plete set of labels includes additional quantum numbers |{α}σ〉 that distinguish different
bandheads with the same Nσ (λσ µσ). Remarkably, these Sp(3,R) basis states are in one-
to-one correspondence with a coupled product of the states of the Bohr vibrational model
(realized in terms of giant monopole-quadrupole resonance states with irrotational flows),
{{A(20)×A(20) · · ·×A(2 0)}n×|Nσ(0 0)〉}(λn µn), and (λσ µσ) deformed states of an SU(3)model [42].

2.3 Ab initio symmetry-adapted no-core shell model

Not surprisingly, the symplectic Sp(3,R) symmetry, the underlying symmetry of the symplectic
rotor model [3,5], has been found to play a key role across the nuclear chart – from the lightest
systems [45,46], through intermediate-mass nuclei [4,8,47], up to strongly deformed nuclei
of the rare-earth and actinide regions [5, 19, 48, 49]. The results agree with experimental
evidence that supports formation of enhanced deformation and clusters in nuclei, as well as
vibrational and rotational patterns, as suggested by energy spectra, electric monopole and
quadrupole transitions, radii and quadrupole moments [11,29,50].

The symmetry-adapted no-core shell model [2, 8, 20] capitalizes on these findings and
presents solutions in terms of a physically relevant basis of nuclear shapes. It exploits both
the SU(3) and Sp(3,R) schemes. Indeed, since the symplectic symmetry does not mix nuclear
shapes, the SA-NCSM provides important insight from first principles into the physics of nuclei
and their low-lying excitations as dominated by only a few (typically one or two) collective
shapes – equilibrium shapes with their vibrations – that rotate (Fig. 1).

By exploiting this almost perfect symmetry, the SA framework resolves the scale explo-
sion problem in nuclear structure calculations, i.e., the explosive growth in computational
resource demands with increasing number of particles and model spaces size. We note that
the SA-NCSM uses the complete model space (that is, all possible shapes) as usually done in
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Figure 1: Emergence of almost perfect symplectic Sp(3,R) symmetry in nuclei from
first principles, enabling ab initio descriptions of collectivity and clustering. Source:
Figure from [2]@ APS; reproduced with permission.
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ter formation: (Left) Probability amplitude of the predominant Sp(3,R) irrep
Nσ(λσ µσ) = 0(2 0) (L = 0) in the 6Li 1+ ground state. Inset: Contributions from the
equilibrium shape (symplectic bandhead) and its vibrations (the case for the NNLOopt
is also shown). (Right) α+ d 3S1-wave vs. the relative distance r. Calculated from
the 6Li 1+ ground state, computed with the SA-NCSM in the Sp(3,R) scheme with
NNLO chiral potential for 10 HO shells and ħhΩ=15 MeV. The ±10% variation in the
LECs of the chiral potential is shown (left) on the horizontal axis and (right) by the
spread of the curve. Source: Figures adapted/reused from [52] @ Frontiers; repro-
duced under the terms of its CC BY license.

conventional shell models, but expands, in a prescribed way, only for those deformed con-
figurations with vibrations that lie outside of the complete model space. This is critical for
enhanced prolate deformation, since spherical and less deformed or oblate shapes easily de-
velop in comparatively small model-space sizes.

The SA-NCSM, when combined with a high-precision realistic inter-nucleon interaction,
provides ab initio predictions of nuclear observables. We often adopt the NNLOopt chiral po-
tential [51] that is used without 3N forces, which have been shown to contribute minimally
to the 3- and 4-nucleon binding energy [51]. Chiral potentials are typically parameterized by
two-nucleon (and three-nucleon) data, whereas the parameters, called the low-energy con-
stants (LECs), remain unchanged and are not adjusted from one many-body system to an-
other. This ensures a predictive power. At the next-to-next-to-leading order (NNLO), there are
14 LECs that enter into the chiral nucleon-nucleon (NN) potential. Our recent findings reveal
the remarkable result that the chiral potential parameterizations have no significant effect on
the dominant nuclear features, such as nuclear shape and the associated Sp(3,R) symmetry,
along with cluster formation (Fig. 2), but only slightly vary details in the nuclear wave func-
tions, such as the contributions of the equilibrium deformation and its vibrations within the
predominant nuclear shape (Fig. 2, left, inset) [52].

3 Critical role of symmetries for studies and predictions of nuclear
properties

3.1 Machine learning pattern recognition with the SA-NCSM

Machine learning approaches are ideal for pattern recognition, thereby providing a suitable
framework to detect and utilize the highly organized patterns in atomic nuclei governed by
the symplectic Sp(3,R) symmetry.

Specifically, Ref. [32] introduces a novel machine learning approach to provide further
insight into atomic nuclei and to detect orderly patterns amidst a vast data of large-scale cal-
culations. The method utilizes a physics-informed neural network that is trained on ab initio
results from the SA-NCSM for light nuclei. Indeed, the SA-NCSM, which expands ab initio
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Figure 3: A novel machine learning approach coupled with the ab initio SA-NCSM is
capable to detect orderly patterns amidst a vast data of large-scale calculations and
to describe sd-shell nuclei, such as 20Ne (shown), 24Si, 40Mg, and even the extremely
heavy nuclei such as 166,168Er and 236U, by training only on nuclei up to 16O. Source:
Figure from [32]@ APS; reproduced with permission.

applications up to medium-mass nuclei, can reach even heavier nuclei when coupled with the
machine learning approach. In particular, we find that a neural network trained on probability
amplitudes for s-and p-shell nuclear wave functions not only predicts dominant configurations
for heavier nuclei but in addition, when tested for the 20Ne ground state, it accurately repro-
duces the probability distribution (Fig. 3).

The nonnegligible configurations predicted by the network provide an important input
to the SA-NCSM for reducing ultra-large model spaces to manageable sizes that can be, in
turn, utilized in SA-NCSM calculations to obtain accurate observables. The neural network is
capable of describing nuclear deformation and is used to track the shape evolution along the
20−42Mg isotopic chain, suggesting a shape-coexistence that is more pronounced toward the
very neutron-rich isotopes [32]. Furthermore, the neural network provides first descriptions of
the structure and deformation of 24Si and 40Mg of interest to x-ray burst nucleosynthesis, and
even of the extremely heavy nuclei such as 166,168Er and 236U, that build upon first principles
considerations [32].

3.2 Probing clustering and physics beyond the standard model

The left-handed vector minus axial-vector (V−A) structure of the weak interaction was postu-
lated in late 1950’s and early 1960’s guided in large part by a series of beta-decay experiments,
and later was incorporated in the Standard Model of particle physics. However, in its most
general form, the weak interaction can also have scalar, tensor, and pseudoscalar terms as
well as right-handed currents. The β decay of 8Li to 8Be, which subsequently breaks up into
two α particles, has long been recognized as an excellent testing ground to search for new
physics (e.g. see [53]) due to the high decay energy and the ease of detecting the β and two α
particles. These experiments have achieved remarkable precision (e.g., see [54,55]) that now
requires confronting the systematic uncertainties that stem from the higher-order corrections
in nuclear beta decay that are difficult to measure experimentally.

As a remarkable result, the ab initio SA-NCSM has recently determined the size of the
recoil-order form factors in the β decay of 8Li (Fig. 4). It has shown that states of the α+ α
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Figure 4: The ab initio SA-NCSM places unprecedented constraints on higher- (recoil)
order corrections ( j2/A

2c0 and j3/A
2c0) in the β decay of 8Li→8Be by addressing the

challenging α + α structure of 8Be. The results are essential for largely improving
the sensitivity of high-precision experiments that probe the weak interaction theory
and test physics beyond the Standard Model [33,55]. Calculations performed on the
NERSC and Frontera HPC systems. Source: Figures from [33] @ APS; reproduced
with permission.

system not included in the evaluated 8Be energy spectrum have an important effect on all
j2,3/A

2c0, b/Ac0 and d/Ac0 recoil-order terms, and can explain the elusive MGT discrepancy in
the A= 8 systems common to all other ab initio approaches.

The SA-NCSM outcomes of Ref. [33] reduce – by over 50% – the uncertainty on these
recoil-order corrections. These results help improve the sensitivity of high-precision β-decay
experiments that probe the V−A structure of the weak interaction in the most stringent limit
on tensor current contribution to the weak interaction theory to date, established in Ref. [55].
Furthermore, the SA-NCSM predicted b/Ac0 and d/Ac0 values are important for other inves-
tigations of the Standard Model symmetries, such as the conserved vector current hypothesis
and the existence of second-class currents in the weak interaction.

3.3 Optical potential in the symmetry-adapted framework for nuclear reactions

In recent years there has been a significant interest in describing nuclear reactions from ab
initio approaches, and especially in constructing from first principles effective inter-cluster
interactions, often referred to as optical potentials. Ab initio optical potentials for elastic scat-
tering at low energy are of particular interest for experiments at rare isotope beams. To utilize
the efficacy of the symmetry-adapted basis, we combine the ab initio symmetry-adapted no-
core shell model with the Green’s function technique (SANCSM/GF) and construct non-local
optical potentials rooted in first principles [56, 57]. Using the Green’s function technique en-
sures that all relevant cluster partitionings are included in the effective potential between the
two reaction fragments (clusters) that are typically in their ground state in the entrance chan-
nel. With the view toward studying neutron and proton elastic scattering from deformed and
heavy targets, we first examine a target of 4He (Fig. 5a), where the effect of the spurious
center-of-mass motion is most evident.

In a complementary symmetry-adapted resonating group method (SA-RGM) framework
[58], one starts from an ab initio description of all particles involved and derives the effec-
tive potential for localized clusters, which are properly normalized and orthogonalized in the
particle sector, which yields non-local effective nucleon-nucleus interactions for the cluster
partitioning or channel under consideration. For a single channel, if the effects of the target
excitations are neglected, the non-local effective nucleon-nucleus interaction can be calculated
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Figure 5: (a) Translationally invariant non-local optical potential for elastic neutron
scattering for a 4He target at E = 8 MeV center-of-mass energy, calculated in the SA-
NCSM with the Green’s function technique (10 shells, ħhΩ=17MeV). Figure from [56].
(b) Effective neutron-nucleus non-local potential (translationally invariant) for the
20Ne ground state, where effects of the target excitations and antisymmetrization
involving three nucleons are neglected (based on ab initio SA-NCSM calculations
of 20Ne with NNLOopt in a model space of 11 shells and ħhΩ=15 MeV inter-shell
distance). Source: Figure from [1] @ Annual Reviews; reproduced under the terms
of its CC BY license.

for each partial wave, as illustrated for n+20Ne(0+g.s.) with NNLOopt in 11 shells (Fig. 5b).
While these calculations limit the antisymmetrization to two nucleons only, this is a first step
toward constructing effective nucleon-nucleus potentials for light and medium-mass nuclei for
the astrophysically relevant energies [59,60].

4 Conclusion

We have discussed the critical role of the emergent Sp(3,R) symmetry in atomic nuclei and
the associated subgroup SU(3), which in turn underpin the Sp(3,R) and SU(3) schemes. By
exploiting these schemes, the ab initio SA-NCSM has enabled machine-learning pattern recog-
nition and descriptions of heavy nuclei, ab initio modeling ofα clustering and collectivity, along
with tests of beyond-the-standard-model physics. In addition, we show that with the help of
the SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using the
dominant symmetry of nuclear dynamics, one can provide solutions to reaction processes in
this region, with a focus on elastic neutron scattering.
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