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Abstract

We give a brief overview of the Yangian symmetry of Feynman integrals. After a short
introduction to the Yangian and integrability, we motivate the emergence of integrable
structures for Feynman integrals via the fishnet limit of AdS/CFT. We discuss the resulting
Yangian differential equations for massless fishnets in four dimensions as well as gen-
eralizations to massive propagators and generic dimensions. We also comment on the
relation to momentum space conformal symmetry and on examples in dimensional regu-
larization. Finally we sketch the recent application to fishnet integrals in two spacetime
dimensions and the curious identification of Yangian invariants with period integrals of
Calabi–Yau geometries.
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1 Introduction

Integrable models appear in all areas of physics, from classical mechanics to quantum field
theory. While they have a natural home in two-dimensional systems like spin chains and 2d
field theories, applications in four-dimensional particle physics have long been limited to spe-
cial high-energy limits in QCD [1]. From the integrability viewpoint an important (still formal)
step into the direction of particle phenomenology was the discovery of integrable structures
in a four-dimensional quantum field theory, i.e. planar N = 4 super Yang–Mills (SYM) the-
ory [2]. While also here a clear connection to two-dimensional physics in the AdS/CFT-dual
string theory is present, this finding opened a new door to apply and extend the toolbox of inte-
grability. Here we discuss another step into this direction, namely the appearance of integrable
structures for Feynman integrals, which constitute the building blocks of generic quantum field
theories including those realized in nature. On the one hand, this detaches integrability in four
dimensions from the special nature of N = 4 SYM theory. On the other hand, an explanation
for these mathematical structures of Feynman integrals can still be found in the integrability of
the planar AdS/CFT correspondence via its so-called fishnet limits [3]. The simplified fishnet
theories arise as particular double-scaling limits of the so-called gamma-deformed N = 4 SYM
theory and they have the particular feature that their correlation functions are in one-to-one
correspondence with individual Feynman integrals [4, 5]. Notably, some of the integrability
structures which underly the planar AdS/CFT duality are inherited by these elementary Feyn-
man integrals as discussed below. Here we will focus on the so-called Yangian symmetry of
these integrals, which is an infinite dimensional extension of a Lie algebra and can be under-
stood as the algebraic foundation of certain classes of integrable models. The need to study
the mathematical properties and symmetry structures of Feynman integrals is underlined by
the fact that their computation still represents a bottle neck for phenomenological predictions,
see [6] for a recent review. At lower loop orders they are governed by the class of multi-
ple polylogarithms which are defined as iterated integrals with rational integration kernels.
In more general cases elliptic integrals and worse geometric structures (e.g. Calabi–Yau ge-
ometries) appear. These are typically characterized by roots of higher order polynomials in
the denominator of the integrand. The exploration of multi-loop Feynman integrals and their
mathematical structure is currently a very active field of research, which makes the appearence
of integrable structures even more fascinating.

2 Integrability and the Yangian

As indicated above, integrability is rooted in two-dimensional physics where it is often iden-
tified with the concept of factorized scattering. The latter denotes the phenomenon that the
n-body scattering matrix of a given theory factorizes into two-body scattering events.1 In fact,
the idea of factorized scattering may be considered the closest to a proper definition of quan-
tum integrability which to date is still lacking, see e.g. [7,8]. On the one hand, the implications
of factorized scattering include the applicability of powerful solution techniques such as the
celebrated Bethe Ansatz. On the other hand, the reason for factorized scattering is found in
the existence of a tower of conserved charges or higher symmetries. In spacetime dimensions
greater than two, higher symmetries are believed to imply a trivial S-matrix via the Coleman–
Mandula theorem [9]. Two-dimensional models, however, provide a fascinating loop-hole and
allow for non-trivial scattering and higher symmetries at the same time. In fact, one can make
the connection between these higher symmetries and the factorization of the S-matrix more
precise and identify a set of symmetry generators bJ such that

�

bJ, S
�

= 0 implies the factoriza-

1Of course, this is only possible in models which feature a notion of scattering.
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Figure 1: Factorized scattering in two dimensions. For consistency the quantum
Yang–Baxter equation (right equality) has to hold: S12S13S23 = S23S13S12. A similar
equation holds for the generating function T (u) of the Yangian generators together
with the quantum R-matrix: RT T = T TR.

tion of S, cf. [10]. The notion of factorized scattering reduces the integrable S-matrix in two
dimensions to the two-body scattering matrix as its fundamental building block, cf. Figure 1.
In the simplest situations, this two-body matrix is a rational function of the rapidity parameter.
This case of rational quantum integrable models is related to the so-called Yangian, an infinite
dimensional extension of a Lie algebra g that was introduced by Drinfeld in 1985 [11], see also
the reviews [12–14]. The Yangian Y [g] in its so-called first realization is defined by two sets
of generators which are characterized by their tensor product actions of the following form:2

Level 0 : Ja =
n
∑

k=1

Ja
k , (1)

Level 1 : bJa = 1
2 f a

bc

n
∑

j<k=1

Jc
j Jb

k +
n
∑

k=1

skJa
k , (2)

Serre relations:
�

bJa,
�

bJb, Jc

��

−
�

Ja,
�

bJb,bJc

��

=O
�

J3
�

. (3)

Here the local level-0 operators generate the underlying Lie algebra and have a trivial coprod-
uct. Their densities Ja

k are also employed to construct the bilocal level-one generators bJa as
specified above. All higher generators of this infinite dimensional algebra can be obtained by
iterative commutation. Here the Serre relations, a quantum algebra generalization of the Lie
algebra’s Jacobi identity, provide additional constraints on the representation. Note that the
Serre relations for the case of the differential operator representation of the conformal alge-
bra, which becomes relevant below, have been discussed in [15,16]. The so-called evaluation
parameters sk in the above definition parametrize an external automorphism of the Yangian
algebra which is realized by the Lorentz boost symmetry in relativistic models.

The Yangian has been studied in the context of various physical setups; examples include
the Heisenberg spin chain with g = su(2), cf. [14]; the AdS/CFT duality with g = psu(2, 2|4),
cf. [17]; or Euclidean fishnet integrals in four dimensions with g= so(1,5), cf. [5].

In fact, the above Yang–Baxter equation depicted in Figure 1 can be lifted to a purely
algebraic structure relating the so-called quantum R-matrix and the monodromy matrix T via
the RTT-relations:

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R21(u− v) . (4)

Here the commutation of two monodromy matrices T (u) acting on spaces 1 and 2, is encoded
in the Yangian R-matrix. The expansion of T (u) in the spectral parameter u gives rise to
the different levels of the Yangian generators. This so-called RTT-realization of the Yangian
represents an alternative way to define the same algebra, which is closely related to the concept
of factorized scattering in physical models.

2In the following these tensor products will be identified with the external legs of planar Feynman graphs.
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3 AdS/CFT and Fishnet theories

One of the physical setups where the Yangian algebra plays a crucial role is the planar AdS/CFT
correspondence. Here both sides of the duality, i.e. N = 4 SYM theory and IIB string theory
on AdS5 × S5 feature the Lie algebra symmetry psu(2, 2|4). In the planar limit, this symme-
try extends to the Yangian Y [psu(2,2|4)] with a natural supersymmetric generalization of the
above algebra definitions. The Yangian has been investigated in many different setups on the
gauge and string side of the duality. It first appeared in this context as a symmetry of the
dilatation generator of N = 4 SYM theory [18]. Here a consequence of Yangian symmetry
is that the spectrum of the dilatation operator can be computed via appropriate generaliza-
tions of the Bethe Ansatz technique that was originally designed for the su(2) Heisenberg spin
chain [2]. Notably, N = 4 SYM theory represents the first four-dimensional quantum field
theory which is believed to be completely integrable3 in the planar limit. It is defined by the
following schematic Lagrangian with SU(N) gauge symmetry:

LN=4 ≃ Tr
�

−FF −DΦDΦ+ Ψ̄DΨ − g2 [Φ,Φ]2 − gΨ [Φ,Ψ]− gΨ̄
�

Φ, Ψ̄
�

�

. (5)

It includes six matrix-valued scalars Φm, four Dirac spinors ΨA and Ψ̄A and the gauge field
strength F . Remarkably, the β-function of N = 4 SYM theory is zero which makes the the-
ory quantum conformal. Integrability arises in the large-N limit with fixed t’Hooft coupling
λ= g2N , where non-planar Feynman diagrams are suppressed by factors of 1/N .

In the above model an additional set of three parameters γ1, γ2 and γ3 can be introduced
via the so-called gamma-deformation of N = 4 SYM theory. All products of fields in the
Lagrangian LN=4 are replaced by non-commutative products, which leads to phase factors
eiγ j(... ) in front of the different terms in the resulting LγN=4. Here the (. . . ) in the phase fac-
tor depends on the different SU(4) Cartan charges of the fields. The additional parameters
in the gamma-deformed Lagrangian now allow for interesting double-scaling limits as noted
in [3]. After rescaling the fields by

p
N , one takes λ→ 0 and sends the gamma-parameters to

imaginary infinity, i.e. γ j → i∞, while keeping the new couplings ξ j =
p
λe−iγ j/2 constant.

In the simplest case only one of the couplings, e.g. ξ = ξ3, is non-vanishing and most of the
fields decouple. The result is the following Lagrangian of the bi-scalar fishnet model for two
complex matrix-valued fields denoted by X and Z:4

LF = N Tr
�

−∂µX̄∂ µX − ∂µ Z̄∂ µZ + ξ2X̄ Z̄X Z
�

. (6)

One of the remarkable properties of this model is that a large class of its planar correla-
tion functions is computed by single Feynman integrals of fishnet structure. The correlator
〈X X X Z ZX̄ Z X̄ X̄ X̄ Z̄ Z̄X Z̄〉 for instance corresponds to the following position space Feynman
graph:

(7)

Here blobs represent integration vertices for the spacetime coordinates xµ with µ = 0, . . . , 3

3A precise definition of this statement is hard to provide.
4We note that in general this bi-scalar Lagrangian is not complete and requires additional double-trace terms

for conformality [19,20]. For the Feynman graphs (alias correlators) considered in this paper, these double-trace
terms do not play a role.
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and lines stand for propagators as summarized in the following Feynman rules:

j k →
1

x2
jk

,
xj →
∫

d4 x j . (8)

Note that we write xµjk = xµj − xµk for differences of the Euclidean spacetime vectors and
we omit the color structure of the graph. Any graph that can be cut out of a square fishnet
lattice thus represents a correlator in the above fishnet theory. This drastic limitation to a
single contributing Feynman graph is attributed to the chiral four-point vertex in the fishnet
Lagrangian.5 The fact that the four-point vertex in (6) is chiral implies a particular admissible
orientation of the color flow in the diagram.

While the fishnet model has been investigated from various perspectives, in the following
we will focus on a particular implication, namely that Feynman integrals possess a higher
Yangian symmetry.

4 Integrability for Feynman integrals

A conformal Lie algebra (or Yangian level-0) symmetry of the above Euclidean Feynman inte-
grals is realized via the following differential operator representation of so(1, 5):

Ja =
n
∑

j=1

Ja
j , with Ja

j ∈



















Dj = −i x jµ∂
µ
x j
− i∆ j ,

Lµνj = i xµj ∂
ν
x j
− i xνj ∂

µ
x j

,

Pµj = −i∂ µx j
,

Kµj = i x2
j ∂
µ
x j
− 2i xµj x jν∂

ν
x j
− 2i∆ j x

µ
j .

(9)

Here derivatives act on the external legs of the Feynman graph and the scaling dimensions
∆ j are set to 1 for the scalar particles considered. Invariance under the above conformal
generators implies that an n-point fishnet integral can be written as a product of a prefactor
Vn, which carries the conformal weight of the integral, and a conformal function that only
depends on a set of conformal variables defined in terms of cross ratios:

In = Vnφ(u1, u2, . . . ) . (10)

Here the precise number of cross ratios uk depends on the number of external points n of the
Feynman graph.

The level-1 Yangian symmetry on the other hand can be constructed from the Lie algebra
generator densities given above with the prescription dictated by (2). Given full level-0 in-
variance of a Feynman integral In, the Yangian commutation relations imply that invariance
under a single level-1 generator yields full Yangian symmetry of the graph. Here one typically
works with the level-1 momentum generator whose explicit form is given by

bPµ = i
2

n
∑

j,k=1

sign(k− j)
�

Pµj Dk + PjνL
µν

k

�

+
n
∑

j=1

s jP
µ
j . (11)

The invariance of the above fishnet integrals under the Yangian can be proven with the so-
called lasso method and the help of the monodromy matrix T (u), whose expansion coefficients
around u=∞ are essentially the Yangian generators, cf. [5]. At order k of the 1/u expansion
these correspond to k-local generators, while the whole monodromy T (u) acts on all n legs of

5This chirality is also responsible for the model being non-unitary.
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a given graph and is constructed as a product of n Lax operators. Schematically, this action
of T (u) can be depicted by a line encircling the Feynman diagram similar to a lasso. A set of
commutation relations and identities for the Lax operators and propagators allow to disentagle
the monodromy from this graph, which results in an eigenvalue equation depicted by (see [5]
for details)

T (u)

= f (u) (12)

Here f (u) denotes a polynomial eigenvalue function of the spectral parameter. Remembering
that T (u) ≃ 1+ 1/u J + 1/u2

bJ + . . . , this eigenvalue equation implies the level-0 and level-1
invariance of the given integral for a judicious choice of the evaluation parameters sk, see the
prescription in [21].

While level-0 conformal invariance of a given Feynman graph implies the form (10), the
level-1 symmetry yields additional constraints for the function φ of the conformal cross ra-
tios. The invariance under the level-1 momentum generator can be rewritten in the following
form [22]:

0= bPµ In = Vn

n
∑

j<k=1

xµjk
x2

jk

Djkφ . (13)

Here at least for lower numbers of external points one can argue that the vectors xµjk/x
2
jk are

in fact independent, which implies that the Yangian invariance can be translated into a system
of partial differential equations (PDEs) in the cross ratios:

Djkφ = 0 , 1≤ j < k ≤ n . (14)

These coupled differential equations are highly constraining and their solutions provide a set
of building blocks, whose linear combination represents the Feynman integral.

Example: 4D cross (or box) integral. The simplest four-dimensional example is the Eu-
clidean cross (or box) integral, whose two names refer to the two alternative representations
in x- or p-space:

I4D
4 = =

∫

d4 x0

x2
10 x2

20 x2
30 x2

40

=

∫

d4ℓ

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2(ℓ− p4)2
. (15)

Here the coordinates xµj can alternatively be interpreted as positions, or dual momenta via the

relation to the ordinary momenta pµj = xµj − xµj+1. The level-0 Yangian, or (dual) conformal

symmetry, of the four-point integral I4 implies the form I4 =
1

x2
13 x2

24
φ(z, z̄), with the conformal

variables z and z̄ defined via the following relation to the cross ratios u and v:

zz̄ =
x2

12 x2
34

x2
13 x2

24

= u , (1− z)(1− z̄) =
x2

14 x2
23

x2
13 x2

24

= v . (16)

The additional Yangian level-1 symmetry yields two coupled differential equations of the form
(cf. (14) and [22])

[Dj(z)− Dj(z̄)]φ(z, z̄) = 0 , j = 1, 2 , (17)
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with the second order differential operators Dj given by

D1(z) = z(z − 1)2∂ 2
z + (3z − 1)(z − 1)∂z + z , (18)

D2(z) = z2(z − 1)∂ 2
z + (3z − 2)z∂z + z . (19)

One finds four solutions to these equations which are of the form f j(z, z̄)/(z − z̄) with [22]

f1 = 1 ,

f2 = log(z̄)− log(z) , (20)

f3 = log(1− z̄)− log(1− z) ,

f4 = 2Li2(z)− 2Li2(z̄) + log
1− z
1− z̄

log(z̄z) .

In addition to the Yangian symmetry the cross integral is invariant under all permutations of
its external legs. This permutation invariance singles out the Bloch–Wigner dilogarithm f4
as the correct Yangian invariant which represents this integral. While this solution has been
known since the early works [23], it is remarkable that the cross can be bootstrapped using
integrability and permutation symmetry only [22]. We note that the overall constant prefactor
remains to be fixed by other means, e.g. numerics or a coincidence limit of external points.

While one might expect that integrability fixes an observable completely, here we have
employed the additional permutation symmetry to single out the correct Yangian invariant of
the four solutions (20). It turns out that all four building blocks are required to express the
integral when going from Euclidean to Minkowski kinematics [24]. As opposed to a single
Euclidean region, in the Minkowski case one distinguishes 64 kinematic regions depending on
the signs of the x2

jk. Here, in a given region the integral is typically invariant under a subset of
all permutations and f4 is no longer the only admissible Yangian invariant. Via similar reason-
ing as above one can bootstrap the Minkowski integral using its Yangian symmetry modulo a
small number of constant coefficients [25].

5 Generalizations: Dimensions, masses, momentum space, . . .

In this section we indicate some generalizations, which go beyond massless square fishnet
integrals in four spacetime dimensions.

Fishnet structures and dimensions. The above bi-scalar fishnet model represents the sim-
plest double-scaling limit of gamma-deformed N = 4 SYM theory. More involved models are
obtained by combining different limits of the three parameters γ j and the coupling constant. In
particular, models exist where also some of the fermions survive, which results e.g. in Yangian-
invariant Feynman graphs of brick wall structure [26]. Here the non-scalar particles require
non-scalar representations of the conformal algebra to construct the Yangian generators.

Apart from generalizing the field content, the above fishnet theories have natural gener-
alizations to different spacetime dimensions. In particular, there exists a double-scaling limit
of Aharony–Bergman–Jafferis–Maldacena (ABJM) theory which results in a three-dimensional
fishnet model with triangular Feynman graphs [4]. Also in six spacetime dimensions one can
write down a similar fishnet theory with hexagonal graph structure [27]. All of the associ-
ated Feynman graphs feature the above Yangian symmetry over the conformal algebra in the
respective spacetime dimension [26]. This even generalizes to graphs with deformed prop-
agator powers a j as long as these sum up to the spacetime dimension at each integration
vertex [21,22,26]:

1

x2
jk

→
1

(x2
jk)

a j
,
∑

j∈vertex

a j = D . (21)
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If the latter conformal condition does not hold, one still finds an invariance under the level-one
momentum generator, which relates to the below discussion of momentum space conformal
symmetry. Finally, the square fishnet model was generalized to a D-dimensional Lagrangian
of the form [28]

LD
F = N Tr
�

X (−∂µ∂ µ)
D
4 X̄ + Z(−∂µ∂ µ)

D
4 Z̄ + ξ2X ZX̄ Z̄
�

. (22)

Here the operators (∂µ∂ µ)
D
4 are understood as integral operators for the case D ̸= 4. The

fact that integrability properties are preserved by all the above modifications demonstrates
the universality of these mathematical structures.

Yangian symmetry for the masses. In the massless case, we argued that Feynman integrals
can be interpreted as correlators in the fishnet theory, which is connected to the integrable
N = 4 SYM theory by means of the above double scaling limit. It is well known how to
introduce masses in the latter theory via the Higgs mechanism, but no integrable structures
are known that survive this process. Hence, a priori one might not expect to find integrable
structures in massive Feynman integrals following the same logic. Still it is instructive to
look at the massive version of N = 4 SYM theory on the so-called Coulomb branch. Masses
are introduce by giving a vacuum expectation value (VEV) to one of the scalar fields in the
Lagrangian (5) [29]:

Φ̂= 〈Φ〉+Φ (23)

This leads to the so-called Coulomb phase of the theory and implies the appearence of massive
propagators of the form

1

x̂2
jk

=
1

x2
jk + (m j −mk)2

. (24)

Importantly, here the masses enter in differences in analogy to the spacetime coordinates. In
particular, for a judicious choice of the above VEV only planar Feynman integrals with masses
on the boundaries survive the large-N limit [29, 30]. These have been shown to posess a
massive extension of the dual conformal symmetry with generators of the following form [29]:

Ja =
n
∑

j=1

Ja
j , with Ja

j ∈



















Dj = −i
�

x jµ∂
µ
x j
+m j∂m j

+∆ j

�

,

Lµνj = i xµj ∂
ν
x j
− i xνj ∂

µ
x j

,

Pµj = −i∂ µx j
,

Kµj = −2i xµj
�

x jν∂
ν
x j
+m j∂m j

+∆ j

�

+ i(x2
j +m2

j )∂
µ
x j

.

(25)

Here the mass can be interpreted as the (D+1)th component of the spacetime vector: x D
j = m j .

Unfortunately to date no massive Yangian symmetry has been detected in the full Coulomb
phase of N = 4 SYM theory. Still we can employ the definition of the level-1 generators
in terms of the Lie algebra generator densities as given in (2). Applying these to Feynman
integrals with massive propagators, it turns out that planar one- and two-loop integrals in
generic kinematics are annihilated for an appropriate choice of evaluation parameters [21].
This statement can be proven explicitly for generic number of external legs and propagator
powers obeying the conformal condition

∑

j∈vertex a j = D at each integration vertex [31].
The only criterion for this symmetry is that the internal loop-to-loop propagator of the two-
loop diagrams remains massless. Numerical tests at higher loop orders suggest that in fact all
Feynman graphs cut out of a regular tiling of the plain feature this massive Yangian symmetry
as long as all internal propagators remain massless [31]. Also a massive extension of the
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fishnet Lagrangian can be defined via a double-scaling limit of a gamma-deformed version of
massive Coulomb branch N = 4 SYM theory [30]:

LMF = N Tr
�

−∂µX̄∂ µX − ∂µ Z̄∂ µZ + ξ2X̄ Z̄X Z
�

− N(ma −mb)
2X a

b X̄ b
a − N(ma −mb)

2Za
b Z̄ b

a . (26)

The planar off-shell amplitudes in this theory correspond to the massive versions of Yangian
invariant Feynman integrals described above.6

Momentum space conformal symmetry. Notably, the level-1 momentum generator remains
a symmetry of the above Feynman integrals even if the conformal condition for the propaga-
tor powers in (21) does not hold, i.e. if there is no level-0 (dual) conformal symmetry. This
statement applies to the massless and massive version of the Yangian symmetry and implies
powerful constraints [21]. Translating the x-space level-one momentum bPµ to the dual mo-
mentum variables defined via pµj = xµj − xµj+1, one finds a massive generalization of the special

conformal generator K̄µj in momentum space which forms part of the following set of operators
obeying the conformal algebra relations:

J̄a =
n
∑

j=1

J̄a
j , with J̄a

j ∈



























D̄j = p jν∂
ν
p j
+

m j∂mj
+m j+1∂mj+1

2 + ∆̄ j ,

L̄µνj = pµj ∂
ν
p j
− pνj ∂

µ
p j

,

P̄µj = pµj ,

K̄µj = pµj ∂
2
p j
− 2
�

p jν∂
ν
p j
+

m j∂mj
+m j+1∂mj+1

2 + ∆̄ j

�

∂
µ
p j

.

Note that these generator densities feature a nearest-neighbor action on the masses of the
external legs of the Feynman graph. In the context of N = 4 SYM theory it is a well known
statement that ordinary and dual conformal symmetry of scattering amplitudes close into the
Yangian algebra [33]. Similar statements hold for the above Feynman integrals in the case of
the ordinary (bosonic) conformal algebra [5,31]. The constraints from bPµ or equivalently K̄µ

can thus be exploited independently of the dual conformal symmetry for massless or massive
integrals. Here one representation or the other may be more convenient depending on whether
one works in x- or p-space. Solving the momentum space conformal Ward identities in the
massless case has recently been subject of great interest, see e.g. [34,35] and follow-ups.

Dimensional regularization. Since the above symmetries can be formulated in generic
spacetime dimension D, one can also employ them in the context of dimensionally regulated
integrals. An interesting example is the following family of Euclidean three-point integrals
with half integer propagator powers a j in D = 3− 2ε dimensions:

I D
3 [a1, a2, a3] :=

∫

dD x0

(x2
01)

a1(x2
02)

a2(x2
03)

a3
. (27)

Here we assume that a1 + a2 + a3 ≤ D/2. The motivation to study these integrals comes from
gravitational physics. The Post-Newtonian (PN) expansion with velocities v≪ c of the 3-body
effective potential in general relativity requires these integrals as an input, e.g. in the following

6Alternatively one can introduce masses via spontaneous symmetry breaking in the bi-scalar fishnet theory
which, however, leads to different propagators and seems not to allow for integrable symmetries [32].
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contribution (in red) to the 3PN potential [36]:

S3PN = · · ·+
∑

j ̸=i
k ̸=i, j

G2mim jmk

4π

§

�

(6v2
i +v2

k−8vi ·v j)(vki ·∂x i
)(vk j ·∂x j

)

+ (8v2
ik−4v2

k )(v ji ·∂x i
)(vi j ·∂x j

)
�

I3[
1
2 , 1

2 , 1
2]

+
�

vk ·∂xk

�2 �
(vki ·∂x i

)(vk j ·∂x j
)+2(vik ·∂xk

)(vi j ·∂x j
)

+4(v ji ·∂x i
)(vi j ·∂x j

)+8(v jk ·∂xk
)(vk j ·∂x j

)
�

I3[
1
2 , 1

2 ,−1
2]
ª

. (28)

To bootstrap these integrals one can employ the Yangian level-1 momentum generator, which
yields two second order PDEs in the variables r jk = |x j − xk| (see [36] for explicit expressions):

Dj I3 = 0 , j = 1, 2 . (29)

These differential equations are solved by the ansatz

µ−2ε I3−2ε
3 [a1, a2, a3] =

A
2ε
+ B + C log
� r12+r13+r23

µ

�

+O (ε) ,

with a scale µ and given polynomials A, B, C , which is inspired by the leading integral in this
family as presented in [37]. Plugging the resulting integrals into the effective potential via
(28), this leads to new v2nG2 contributions to the Post-Newtonian expansion of the 3-body
effective potential. The same approach can be applied to higher PN integrals I3−2ε

3 [a1, a2, a3]
in this family (cf. [36]), which can then be inserted into the higher order analogues of (28).

Soft and collinear anomalies. Notably, the above Yangian or momentum space conformal
symmetry does not commute with coincidence or lightlike limits of the external kinematic
variables xµj or their differences, respectively. These correspond to soft or on-shell limits in

the dual momentum variables pµj :

Coincidence/soft limit: xµj → xµj+1 ↔ pµj → 0 , (30)

Lightlike/on-shell limit: x2
j, j+1→ 0 ↔ p2

j → 0 . (31)

These situations lead to anomalies even for finite integrals, see [38] for examples of coinci-
dence limits and [39,40] for the on-shell case.

6 Yangian symmetry and Calabi–Yau geometry

In order to make progress on understanding fishnet integrals at higher loop orders, we consider
Feynman graphs in D = 2 spacetime dimensions, see [41] for more details. For square fishnets
with propagators (x−2)a j to obey the conformal condition

∑4
j=1 a j = D we set a j = 1/2 for

all propagators. The respective integrals represent correlators in the D-dimensional version
of the square fishnet theory defined by the Lagrangian in (22) [28]. Similar to the conformal
Lie algebra in two dimensions, the conformal Yangian splits into a holomorphic and an anti-
holomorphic part: Y [sl(2,R)]⊕ Y [sl(2,R)]. We thus expect the following double copy form
for the respective fishnet integrals:

φ(z, z̄) = Π⃗†(z̄) ·Σ · Π⃗(z) . (32)

Here Π⃗(z) denotes a vector of solutions to the Yangian invariance equations for Y [sl(2,R)]
with z indicating the conformal cross ratios and z̄ their complex conjugates. The symbol Σ
represents a constant matrix which defines the precise linear combination of the Yangian in-
variants representing the Feynman integral.
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Example: 2D cross (or box) integral. Consider the simplest example of the 2D cross inte-
gral which, using conformal symmetry, can be written in the form

I2D
4 = =

1
|x12||x34|

φ(z, z̄) . (33)

The cross integral depends on a single conformal variable z (and its conjugate z̄). Imposing
invariance of the holomorphic part of the integral under Y [sl(2,R)], the respective Yangian
differential equation takes the form

�

1+ 4(2z − 1)∂z + 4z(z − 1)∂ 2
z

�

Π⃗(z) = 0 . (34)

One finds two solutions K(z) and K(1−z) to this equation, which indeed combine into a double
copy of Yangian invariants for the 2D cross integral [38,42]:

φ(z, z̄) =
4
π

i
�

K(z) iK(1− z)
�

·
�

0 1
−1 0

�

·
�

K(z̄)
−iK(1− z̄)

�

. (35)

The two solutions K(z) and K(1− z) of the Yangian equation are identified with the complete
elliptic integral of the first kind evaluated at different arguments:

K(z) =

∫ 1

0

d t
p

(1− t2)(1− zt2)
. (36)

This integral has an interesting relation to geometry via the elliptic curve defined by the poly-
nomial in the denominator of the integrand:

y2 =
�

1− t2
� �

1− zt2
�

a

b

(37)

The elliptic curve is isomorphic to a torus with two distinguished cycles denoted by a and b.
The two period integrals associated to these two cycles are precisely the two Yangian invariants
K(z) and K(1 − z) with (34) representing the so-called Picard–Fuchs differential equation
associated with the elliptic curve.

For higher loop fishnet integrals in 2D it turns out that the above double copy pattern con-
tinues to hold. Also these integrals can be written in the form (32) with a vector of Yangian
invariant functions Π⃗ of the conformal cross ratios [41].7 The geometric interpretation of these
Yangian invariants generalizes to a family of Calabi–Yau’s with the above elliptic curve repre-
senting a Calabi–Yau 1-fold. We note that a Calabi–Yau ℓ-fold is defined as an ℓ-dimensional
complex Kähler manifold with vanishing first Chern class. Here the last condition relates to
the conformal nature of the fishnet integrals defined in terms of four-point vertices only. As
for the elliptic curve, also the higher Calabi–Yau’s posses an associated set of period integrals
which are annihilated by a Picard–Fuchs ideal of differential operators. The conformal cross
ratios of the fishnet integrals correspond to the Calabi–Yau moduli. At 3 loops for instance,
the respective 2D integral depends on 5 cross ratios and corresponds to a Calabi–Yau 3-fold
with a 12-dimensional vector Π⃗ of Yangian-invariant period integrals. The conjecture of [41]

7To obtain the complete Picard–Fuchs ideal of differential operators one has to take the permutation symmetries
of the integrals into account, see also the example of the 4D cross integral given in Section 4 where these were
used in a different way.
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suggests that for generic 2D fishnet integrals the Picard–Fuchs ideal is obtained by combin-
ing Yangian and permutation symmetries of the respective Feynman graph. This represents a
curious new relation between integrability and Calabi–Yau geometries!

Notably, the geometric interpretation of fishnet integrals goes even further [41]. The fish-
net expression of (32) corresponds to the so-called quantum volume of a particular Calabi–
Yau geometry, which is obtained from the original fishnet Calabi–Yau via the celebrated mirror
symmetry. This finding extends the volume interpretation of Feynman integrals, which was
well known at one loop order (see e.g. [43]), to higher loops — at least in two spacetime di-
mensions. Another notable fact is that the conformal fishnet function φ computes the Kähler
potential V of the Calabi–Yau via the relation φ = exp(−V ). More details on this elaborate
construction are given in [41].

7 Conclusion

It is fascinating that integrable structures appear for rather broad classes of Feynman integrals,
which constitute the building blocks of generic quantum field theories. The two-dimensional
nature of integrability is satisfied with the ordering of the external legs of planar Feynman
graphs. Here we have focussed on the Yangian invariance of Feynman integrals, which provides
systems of partial differential equations originating in a spacetime symmetry. We note that
integrability in the context of fishnet integrals can be considered from various different angles
and already in 1980 A.B. Zamolodchikov investigated integrable structures for these integrals
in the context of statistical vertex models [44]. More recent applications include the extraction
of Feynman integrals from elements of the fishnet dilatation operator [4], the Basso–Dixon
correlators of [42,45], or the interesting number-theoretic relation to Q-functions of [46].

There are numerous intriguing directions to further explore the Yangian symmetry of Feyn-
man integrals. In particular, the connection to Calabi–Yau geometries promises interesting
novel insights and new connections to mathematics.

Another curious appearance of integrability in the context of higher dimensional conformal
field theory is the interpretation of conformal blocks as eigenfunctions of integrable Calogero–
Sutherland or Gaudin Hamiltonians [47,48]. It would be fascinating to relate these structures
to the Yangian symmetry of conformal correlation functions discussed above.

Going beyond the realm of flat space, there are curious new relations to correlation func-
tions in Anti-de-Sitter space. In [49] it was noted that Witten contact diagrams are identical
with one-loop Feynman integrals featuring Yangian symmetry [21]. If this connection gener-
alizes to other classes of Witten diagrams, this may open a new playground for applications of
integrability in AdS spaces.
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