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Abstract

We present a new approach to the consistent subtraction of a non power-counting renor-
malizable extension of the Abelian Higgs-Kibble (HK) model supplemented by a dim. 6
derivative-dependent operator controlled by the parameter z. A field-theoretic represen-
tation of the physical Higgs scalar by a gauge-invariant variable is used in order to for-
mulate the theory by exploiting a novel differential equation, controlling the dependence
of the quantized theory on z. These results pave the way to the consistent subtraction
by a finite number of physical parameters of some non-power-counting renormalizable
models possibly of direct relevance to the study of the Higgs potential at the LHC.
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1 Introduction

In the quest for new physics at the LHC a significant role has been recently played on the theo-
retical side by the Standard Model (SM) Effective Field Theories [1–3]. Deviations from the SM
Lagrangian are described by a set of gauge-invariant higher-dimensional operators suppressed
by some large energy scale Λ. The resulting theory is no more power-counting renormalizable
and therefore more and more ultraviolet (UV) divergences arise as more loops are included.
Their subtraction requires the introduction of more and more higher-dimensional operators
compatible with the symmetries of the model.

Power-counting renormalizable theories on the other hand are defined in terms of a finite
number of physical parameters in one-to-one correspondence with the finite number of oper-
ators required to subtract the UV divergences of the one-particle irreducible (1-PI) amplitudes
to all orders in the loop expansion (once linear wave-function renormalization has been taken
into account).

This is at variance with the increasing number of higher-dimensional operators required to
make effective field theories finite as higher perturbative orders are included. Consequently,
effective field theories preserve predictivity only up to the energy scale Λ: below Λ only a
finite number of higher dimensional operators are physically relevant and in this sense a finite
number of physical parameters control physical observables (up to the relevant energy scale).

The question of the minimal set of independent physical operators required to renormalize
an effective field theory is a subtle question. First of all one must take into account redundacies
associated with the equations of motion [4], or equivalently by generalized field redefinitions
that are in general non-polynomial and prove essential in order to consistently subtract UV
divergences by local counter-terms [5].

Moreover, it has been recently advocated [4,6] that additional relations between seemingly
independent UV divergent amplitudes are easier to derive within a particular choice of gauge-
invariant field coordinates [7–9].

For instance, in the usual formalism of the Abelian Higgs-Kibble model, the complex scalar
field φ = 1p

2
(v + σ + iχ) is used, v being the vacuum expectation value of φ, σ the field

describing the physical scalar mode and χ the pseudo-Goldstone field. φ transforms in the
fundamental representation of the gauge group U(1), δφ = ieαφ with α the infinitesimal
gauge transformation and e the U(1) gauge coupling constant.

One might also consider the alternative choice of using the gauge invariant combination

φ†φ −
v2

2
∼ vX2 ,

in order to represent the physical scalar mode (this is the so-called X -formalism, based on the
set of auxiliary fields X2 and the Lagrange multiplier X1).

The resulting theory has been described at length in [4,6,10–12] and its tree-level vertex
functional is reported in Eq.(A.1). It is physically equivalent to the Abelian Higgs-Kibble model,
after going on-shell with both X1 and X2.

At variance with the ordinary formalism, the set of functional identities of the theory in
the X -formalism is richer. For instance, 1-PI amplitudes involving at least one X1 or X2-fields
are uniquely fixed by the X1,2-functional equations in Eqs.(B.3,B.4) in terms of amplitudes
without.

More importantly, it turns out that the X2-equation of the Abelian Higgs-Kibble model
admits a unique deformation, compatible with all the symmetries of the theory and associated
with the addition to the classical action of a bilinear operator in X2, see the first term in the
second line of Eq.(A.1). At z = 0 we recover the power-counting renormalizable Abelian
Higgs-Kibble model, while at z ̸= 0 we obtain a non power-counting renormalizabile theory
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physically equivalent to the one generated by the introduction of the dim.6 operator

z
2
∂ µX2∂µX2 ∼

z
2v2
∂ µ(φ†φ)∂µ(φ

†φ) . (1)

A crucial remark is that in the X -formalism the parameter z enters classically only in the
quadratic part of the classical action, while in the standard approach it also appears in the
interaction vertices. This property allows one to derive in the X -formalism an extremely pow-
erful differential equation.

By solving the latter equation, one obtains a unique prescription for the amplitudes of the
non-power-counting renormalizable model at z ̸= 0 in terms of those at z = 0.

If the theory at z = 0 is power-counting renormalizable (as in the case we deal with in the
present paper, for the sake of definiteness), the model at z ̸= 0 is defined in terms of the same
(finite, to all orders in perturbation theory) number of physical parameters plus z.

If, on the other hand, the model at z = 0 is an effective field theory, the results of the
present paper show that the addition of the dim.6 interaction in Eq.(1) comes at no cost, since
the complete dependence of the amplitudes at z ̸= 0 is still uniquely determined algebraically
by the z-differential equation in terms of the amplitudes at z = 0.

The relevant parameters up to the scale energy Λ are those of the effective theory at z = 0
plus z. This is a highly non-trivial result that follows from the z-differential equation.

2 The z-differential equation

The starting point is the diagonalization of the quadratic part in the scalar sector, that can be
achieved by the field redefintion

σ = σ′ + X1 + X2 . (2)

The propagators read

∆σ′σ′ =
i

p2 −m2
, ∆X1X1

= −
i

p2 −m2
, ∆X2X2

=
i

(1+ z)p2 −M2
. (3)

In this basis the dependence on the parameter z only arises via the X2-propagator. Intro-
ducing then the differential operator

DM2

z = (1+ z)∂z +M2∂M2 , (4)

one finds that ∆X2X2
is an eigenvector of DM2

z with eigenvalue -1:

DM2

z ∆X2X2
(k2, M2) = −∆X2X2

(k2, M2) . (5)

The argument generalizes to diagrams with a given number of internal X2-lines. Let us
collectively denote with Φ the set of fields and external sources of the theory, and let us indicate
with pi (with i = 1, . . . , r) their external momenta, with Φi = Φ(pi) and pr = −

∑r−1
1 pi; in this

way a n-loop 1-PI Green’s function Γ (n)Φ1···Φr
with r Φi insertions can be decomposed as the sum of

all 1-PI diagrams with external legs Φ1 · · ·Φr with zero, one, two,..., ℓ internal X2-propagators,
i.e.,

Γ
(n)
Φ1···Φr

=
∑

ℓ≥0

Γ
(n;ℓ)
Φ1···Φr

. (6)

Then by applying the differential operator DM2

z we find

DM2

z Γ
(n;ℓ)
Φ1···Φr

= −ℓΓ (n;ℓ)
Φ1···Φr

=⇒ DM2

z Γ
(n)
Φ1···Φr

= −
∑

ℓ≥0

ℓΓ
(n;ℓ)
Φ1···Φr

. (7)
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Hence we see that the subdiagrams with a fixed number ℓ of internal X2-lines are eigen-
vectors of the DM2

z with eigenvalue ℓ. The most general solution to this equation (of the ho-
mogeneous Euler’s type) reads (indicating explicitly only the dependence on the parameters
z and M2)

Γ
(n;ℓ)
Φ1···Φr

(z, M2) =
1

(1+ z)ℓ
Γ
(n;ℓ)
Φ1···Φr

(0, M2/(1+ z)) . (8)

Thus, amplitudes at z ̸= 0 in each ℓ-sector are obtained from those at z = 0 by dividing them
by the (1+ z)ℓ factor and rescaling by (1+ z) the square of the Higgs mass M2.

Otherwise said, in the X -formalism the existence of the z-differential equation implies
that the deformed theory at z ̸= 0 can be fully characterized once one knows the boundary
conditions given by the amplitudes of the power-counting renormalizable theory at z = 0.

2.1 ST identities in the ℓ-sector

Another crucial property of the X -formalism is that the ST identities separately hold true in
each ℓ-sector. The proof of this statement can be found in [12] and relies on the gauge-
invariance of the X2-field.

At order n in the loop expansion we get a set of ST identities, one for each ℓ:

S0

�

Γ (n;ℓ)
�

+
n−1
∑

j=1

ℓ
∑

i=0

�

Γ ( j;i), Γ (n− j;ℓ−i)
�

= 0 . (9)

Such identities encode the conditions required to guarantee physical unitarity of the theory
(i.e., the cancellation of the intermediate ghost states). Since X2 is gauge-invariant, it is phys-
ically sensible that it does not participate to such cancellations and therefore that the quartet
mechanism [13–15] is at work separately for each sector with a given number ℓ of internal
X2-lines.

2.1.1 Normalization conditions

The normalization conditions that must be imposed in the theory at z = 0 can also be consis-
tently decomposed according to the degree induced by the number of internal X2-lines.

For instance, the on-mass shell normalization condition for the vector meson is obtained
by requiring that the position of the pole of the physical components of the vector meson does
not shift with respect to the one at tree level and that the residue of the propagator on the
pole is one, i.e.

Re ΣT (M
2
A) = 0 , Re

∂ΣT (p2)
∂ p2

�

�

�

�

p2=M2
A

= 0 . (10)

In the above equation we have denoted by ΣT the transverse component of the two-point 1-PI
gauge function:

ΓAµAν = gµν(p
2 −M2

A) +
�

gµν −
pµpν
p2

�

ΣT (p
2) +

pµpν

p2
ΣL(p

2) . (11)

These conditions can be matched by finite renormalizations involving the following ST (and
gauge-) invariant operators (we use the notation of Ref. [6]):

λ4

∫

d4 x (Dµφ)†Dµφ ⊃
λ4v
2

∫

d4 x A2
µ ,

λ8

2

∫

d4 x F2
µν ⊃ λ8

∫

d4 x Aµ(□gµν − ∂ µ∂ ν)Aν . (12)
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Now, since the ST identities hold true separately at each ℓ-order, we can project the normal-
ization condition Eq.(10) at the relevant ℓ-order and at order n in the loop expansion:

Re Σ(1;ℓ)
T (M2

A) + vλ(1;ℓ)
4 = 0 , Re

∂Σ
(1;ℓ)
T

∂ p2

�

�

�

�

�

p2=M2
A

− 2M2
Aλ
(1;ℓ)
8 = 0 . (13)

As can be seen from the above equation, on mass shell renormalization conditions respect the
layers in ℓ and consequently the z-differential equation.

Otherwise said, once the appropriate normalization conditions are enforced at order n in
the loop expansion at z = 0, Eq.(8) fixes the 1-PI amplitudes of the theory at z ̸= 0 in a unique
way.

3 Conclusion

We have obtained a differential equation that controls the deformation of the Abelian Higgs-
Kibble model induced by the dim.6 operator

z
2
∂ µX2∂µX2 ∼

z
2
∂ µ(φ†φ)∂µ(φ

†φ) .

The solution to the differential equation is uniquely defined in terms of the boundary condi-
tions of the (renormalized) amplitudes of the theory at z = 0. This allows one to define the
corresponding non-power-counting renormalizable theory in a way that it only depends on
the same number of physical parameters of the model at z = 0 (either the finite ones, to all
orders in perturbation theory, if the model at z = 0 is power-counting renormalizable, or those
relevant up to the energy scale Λ, if the model at z = 0 is an effective field theory), and z.

The results obtained so far for the Abelian gauge group can be generalized to the full elec-
troweak SU(2)×U(1) theory. This is of particular interest, since one could obtain an extension
of the SM and of Beyond-the-Standard-Model (BSM) theories by a derivative-dependent dim.6
operator, that still can be defined at the quantum level in a consistent way (to all orders in
z). Within this framework, applications to phenomenology should also be studied. In partic-
ular one could study the BSM corrections to the SM Higgs potential, that are expected to be
explored at the LHC experimental program.

Another interesting problem is whether the present construction can be extended to gauge-
invariant fields representing the gauge and fermion degrees of freedom. We hope to report on
these issues soon.
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A Classical vertex functional in the X-formalism

The classical vertex functional is given by:

Γ (0) =

∫

d4 x

�

−
1
4

FµνFµν + (D
µφ)†(Dµφ)−

M2 −m2

2
X 2

2 −
m2

2v2

�

φ†φ −
v2

2

�2

+
z
2
∂ µX2∂µX2 − c̄(□+m2)c +

1
v
(X1 + X2)(□+m2)

�

φ†φ −
v2

2
− vX2

�

+
ξb2

2
− b (∂ A+ ξevχ) + ω̄

�

□ω+ ξe2v(σ+ v)ω
�

+ c̄∗
�

φ†φ −
v2

2
− vX2

�

+σ∗(−eωχ) +χ∗eω(σ+ v)

�

. (A.1)

In the above equation Dµ is the covariant derivative

Dµ = ∂µ − ieAµ . (A.2)

The first line of Eq.(A.1) is the classical action of the Abelian Higgs-Kibble model. By going
on-shell with X1 and imposing the constraint

X2 =
1
v

�

φ†φ −
v2

2

�

, (A.3)

we recover the usual quartic Higgs potential with coupling ∼ − M2

2v2 . Indeed one can prove [6]
that the only physical parameter is M , m cancelling out in physical quantities. The first term
of the second line contains the deformation proportional to the parameter z. By going on-shell
with X1 we obtain the dimension-six derivative operator ∼ z

2v2 ∂
µ(φ†φ)∂µ(φ†φ), that breaks

the power-counting renormalizability of the theory. The second and third terms in the second
line of Eq.(A.1) implements off-shell in a BRST-invariant way the constraint in Eq.(A.3) via the
Lagrange multiplier X1. The X2-dependent term simplifies diagonalization of the quadratic
part via the transformation in Eq. (2).

X1- andσ′- propagators have a relative minus sign responsible for their mutual cancellation
inside loops, see Eq.(3), that holds true to all order by virtue of the constraint U(1) BRST
symmetry

SX1 = vc , Sc = 0 , S c̄ =
1
v

�

φ†φ −
v2

2
− vX2

�

, (A.4)

all other fields and external sources being invariant under S and c, c̄ being the constraint U(1)
ghost and antighost fields.

The third line implements the usual Rξ-gauge in a BRST-invariant way, ω̄,ω being the
antighost and ghost fields associated with the gauge group U(1) and b the Nakanishi-Lautrup
field. The U(1) BRST symmetry is defined as usual according to

sAµ = ∂µω , sφ = ieωφ , sσ = −eωχ , sχ = eω(σ+ v) , sω̄= b , sb = 0 , (A.5)

all other fields being invariant. In particular X2 is BRST-invariant. The cohomological BRST
analysis of the physical spectrum of the model is given in [12]. It turns out that the physical
modes are the three transverse components of the massive gauge field Aµ and one physical
scalar with tree-level mass M .

Finally the last line of Eq.(A.1) contains the external sources required to renormalize the
theory. Being coupled to the BRST variation respectively of c̄,σ and χ, they are the anti-
fields [16] of the BRST differentials S and s. Invariance of the classical vertex functional
under S and s is translated at the quantum level into the Slavnov-Taylor (ST) identities in
Eqs.(B.1) and (B.5).
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B Functional identities

The functional identities controlling the theory are listed below:

• The ST identity for the constraint BRST symmetry is

SC(Γ )≡
∫

d4 x
�

vc
δΓ

δX1
+
δΓ

δc̄∗
δΓ

δc̄

�

=

∫

d4 x
�

vc
δΓ

δX1
− (□+m2)c

δΓ

δc̄∗

�

= 0 , (B.1)

where in the latter equality we have used the fact that both the ghost c and the antighost
c̄ are free:

δΓ

δc̄
= −(□+m2)c ,

δΓ

δc
= (□+m2)c̄ . (B.2)

• The X1-equation of motion, that follows from Eq.(B.1) by using the fact that the ghost c
is free:

δΓ

δX1
=

1
v
(□+m2)

δΓ

δc̄∗
. (B.3)

• The X2-equation of motion:

δΓ

δX2
=

1
v
(□+m2)

δΓ

δc̄∗
− (□+m2)X1 − ((1+ z)□+M2)X2 − vc̄∗ . (B.4)

Notice that the z-term is the only one that affects the right-hand side of the above equa-
tion in a linear way (so that no new external source is required to control its renormal-
ization) and that contains at most two derivatives (in order to avoid inconsistencies of
higher derivative theories due to the appearance of negative norm states in the physical
spectrum).

• The ST identity associated to the gauge group BRST symmetry

S(Γ ) =
∫

d4 x

�

∂µω
δΓ

δAµ
+
δΓ

δσ∗
δΓ

δσ
+
δΓ

δχ∗
δΓ

δχ
+ b
δΓ

δω̄

�

= 0 . (B.5)

• The b-equation:
δΓ

δb
= ξb− ∂ A− ξevχ . (B.6)

• The antighost equation:
δΓ

δω̄
= □ω+ ξev

δΓ

δχ∗
. (B.7)
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