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Abstract

The algebraic framework of the interacting boson model with configuration mixing is em-
ployed to demonstrate the occurrence of intertwined quantum phase transitions (IQPTs)
in the 40Zr isotopes with neutron number 52–70. The detailed quantum and classical
analyses reveal a QPT of crossing normal and intruder configurations superimposed on
a QPT of the intruder configuration from U(5) to SU(3) and a crossover from SU(3) to
SO(6) dynamical symmetries.
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1 Introduction

Quantum phase transitions [1–3] are qualitative changes in the structure of a physical system
that occur as a function of one (or more) parameters that appear in the quantum Hamiltonian
describing the system. In nuclear physics [4], we vary the number of nucleons and examine
mainly two types of quantum phase transitions (QPTs). The first describes shape phase tran-
sitions in a single configuration, denoted as Type I. When interpolating between two shapes,
for example, the Hamiltonian can be written as a sum of two parts

Ĥ = (1− ξ)Ĥ1 + ξĤ2 , (1)

with ξ the control parameter. As we vary ξ with nucleon number from 0 to 1, the equilibrium
shape and symmetry of the Hamiltonian vary from those of Ĥ1 to those of Ĥ2. QPTs of this type
have been studied extensively in the framework of the interacting boson model (IBM) [4–7].
One example of such QPT is the 62Sm region with neutron number 84–94, where the shape
evolves from spherical to axially-deformed, with a critical point at neutron number 90.

The second type of QPT occurs when the ground state configuration changes its character,
typically from normal to intruder type of states, denoted as Type II QPT. In such cases, the
Hamiltonian can be written in matrix form [8]. For two configurations A and B we have

Ĥ =

�

ĤA(ξA) Ŵ (ω)
Ŵ (ω) ĤB(ξB)

�

, (2)

with ξi (i = A, B), the control parameter of configuration (i), and Ŵ , the coupling between
them with parameterω. QPTs of this type are manifested empirically near (sub-) shell closure,
e.g. in the light Pb-Hg isotopes, with strong mixing between the configurations [9,10].

Recently, we have introduced a new type of phase-transitions in even-even [11, 12] and
odd-mass [13] nuclei called intertwined quantum phase transitions (IQPTs). The latter refers
to a scenario where as we vary the control parameters (ξA,ξB,ω) in Eq. (2), each of the
Hamiltonians ĤA and ĤB undergoes a separate and clearly distinguished shape-phase transi-
tion (Type I), and the combined Hamiltonian simultaneously experiences a crossing of config-
urations A and B (Type II).

2 Theoretical framework

A convenient framework to study the different types of QPTs together is the extension of the
IBM to include configuration mixing (IBM-CM) [14–16].

2.1 The interacting boson model with configuration mixing

The IBM for a single shell model configuration has been widely used to describe low-lying
quadrupole collective states in nuclei in terms of N monopole (s†) and quadrupole (d†) bosons,
representing valence nucleon pairs. The model has U(6) as a spectrum generating algebra,
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where the Hamiltonian is expanded in terms of its generators, {s†s, s†dµ, d†
µs, d†

µdµ′}, and con-
sists of Hermitian, rotational-scalar interactions which conserve the total number of s- and
d-bosons N̂ = n̂s + n̂d = s†s +

∑

µ d†
µdµ . The boson number is fixed by the microscopic inter-

pretation of the IBM [17] to be N=Nπ+Nν, where Nπ (Nν) is the number of proton (neutron)
particle or hole pairs counted from the nearest closed shell.

The solvable limits of the model correspond to dynamical symmetries (DSs) associated
with chains of nested sub-algebras of U(6), terminating in the invariant SO(3) algebra. In the
IBM there are three DS limits

U(6) ⊃











U(5) ⊃ SO(5) ⊃ SO(3) ,

SU(3) ⊃ SO(3) ,

SO(6) ⊃ SO(5) ⊃ SO(3) .

(3)

In a DS, the Hamiltonian is written in terms of Casimir operators of the algebras of a given
chain. In such a case, the spectrum is completely solvable and resembles known paradigms of
collective motion: spherical vibrator [U(5)], axially symmetric [SU(3)] and γ-soft deformed
rotor [SO(6)]. In each case, the energies and eigenstates are labeled by quantum numbers
that are the labels of irreducible representations (irreps) of the algebras in the chain. The
corresponding basis states for each of the chains (3) are

U(5) : |N , nd ,τ, n∆, L〉 , (4a)

SU(3) : |N , (λ,µ), K , L〉 , (4b)

SO(6) : |N ,σ,τ, n∆, L〉 , (4c)

where N , nd , (λ,µ),σ,τ, L label the irreps of U(6), U(5), SU(3), SO(6), SO(5) and SO(3),
respectively, and n∆, K are multiplicity labels.

An extension of the IBM to include intruder excitations is based on associating the different
shell-model spaces of 0p-0h, 2p-2h, 4p-4h, . . . particle-hole excitations, with the corresponding
boson spaces with N , N+2, N+4, . . . bosons, which are subsequently mixed [15,16]. For two
configurations the resulting IBM-CM Hamiltonian can be transcribed in a form equivalent to
that of Eq. (2)

Ĥ = Ĥ(N)A + Ĥ(N+2)
B + Ŵ (N ,N+2) . (5)

Here, the notations Ô(N)= P̂†
N ÔP̂N and Ô(N ,N ′)= P̂†

N ÔP̂N ′ , stand for an operator Ô, with P̂N ,

a projection operator onto the N boson space. The Hamiltonian Ĥ(N)A represents the N bo-

son space (normal A configuration) and Ĥ(N+2)
B represents the N+2 boson space (intruder B

configuration).

2.2 Wave functions structure

The eigenstates |Ψ; L〉 of the Hamiltonian (5) with angular momentum L, are linear combina-
tions of the wave functions, ΨA and ΨB, in the two spaces [N] and [N + 2],

|Ψ; L〉= a |ΨA; [N], L〉+ b |ΨB; [N+2], L〉 , (6)

with a2+b2=1. We note that each of the components in Eq. (6), |ΨA; [N], L〉 and |ΨB; [N+2], L〉,
can be expanded in terms of the different DS limits with its corresponding boson number in
the following manner

|Ψi; [Ni], L〉=
∑

α

C (Ni ,L)
α |Ni ,α, L〉 , (7)

where NA= N and NB = N + 2, and α = {nd ,τ, n∆}, {(λ,µ), K}, {σ,τ, n∆} are the quantum
numbers of the DS eigenstates. The coefficients C (N ,L)

α give the weight of each component
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in the wave function. Using them, we can calculate the wave function probability of having
definite quantum numbers of a given symmetry in the DS bases, Eq. (7), for its A or B parts

U(5) : P(Ni ,L)
nd

=
∑

τ,n∆

[C (Ni ,L)
nd ,τ,n∆

]2 , SO(6) : P(Ni ,L)
σ =
∑

τ,n∆

[C (Ni ,L)
σ,τ,n∆

]2 , (8a)

SU(3) : P(Ni ,L)
(λ,µ) =
∑

K

[C (Ni ,L)
(λ,µ),K]

2 , SO(5) : P(Ni ,L)
τ =
∑

nd ,n∆

[C (Ni ,L)
nd ,τ,n∆

]2 . (8b)

Here the subscripts i=A, B denote the different configurations, i.e., NA=N and NB =N + 2.
Furthermore, for each eigenstate (6), we can also examine its coefficients a and b, which
portray the probability of the normal-intruder mixing. They are evaluated from the sum of the
squared coefficients of an IBM basis. For the U(5) basis, we have

P(NA,L)
a ≡ a2 =
∑

nd ,τ,n∆

|C (NA,L)
nd ,τ,n∆

|2 , P(NB ,L)
b ≡ b2 =
∑

nd ,τ,n∆

|C (NB ,L)
nd ,τ,n∆

|2 , (9)

where the sum goes over all possible values of (nd ,τ, n∆) in the (Ni , L) space, i = A, B, and
a2 + b2=1.

2.3 Geometry

To obtain a geometric interpretation of the IBM is we take the expectation value of the Hamil-
tonian between coherent (intrinsic) states [5,18] to form an energy surface

EN (β ,γ) = 〈β ,γ; N | Ĥ |β ,γ; N〉 . (10)

The (β ,γ) of Eq. (10) are quadrupole shape parameters whose values, (βeq,γeq), at the global
minimum of EN (β ,γ) define the equilibrium shape for a given Hamiltonian. The values are
(βeq = 0), (βeq =

p
2,γeq = 0) and (βeq = 1,γeq arbitrary) for the U(5), SU(3) and SO(6) DS

limits, respectively. Furthermore, for these values the ground-band intrinsic state, |βeq,γeq; N〉,
becomes a lowest weight state in the irrep of the leading subalgebra of the DS chain, with
quantum numbers (nd = 0), (λ,µ)= (2N , 0) and (σ=N) for the U(5), SU(3) and SO(6) DS
limits, respectively.

For the IBM-CM Hamiltonian, the energy surface takes a matrix form [19]

E(β ,γ) =

�

EA(β ,γ;ξA) Ω(β ,γ;ω)
Ω(β ,γ;ω) EB(β ,γ;ξB)

�

, (11)

where the entries are the matrix elements of the corresponding terms in the Hamiltonian (2),
between the intrinsic states of each of the configurations, with the appropriate boson number.
Diagonalization of this two-by-two matrix produces the so-called eigen-potentials, E±(β ,γ).

2.4 QPTs and order parameters

The energy surface depends also on the Hamiltonian parameters and serves as the Landau
potential whose topology determines the type of phase transition. In QPTs involving a single
configuration (Type I), the ground state shape defines the phase of the system, which also
identifies the corresponding DS as the phase of the system. Such Type I QPTs can be studied
using a Hamiltonian as in Eq. (1), that interpolates between different DS limits (phases) by
varying its control parameters ξ. The order parameter is taken to be the expectation value of
the d-boson number operator, n̂d , in the ground state, 〈n̂d〉0+1 , and measures the amount of
deformation in the ground state.
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In QPTs involving multiple configurations (Type II), the dominant configuration in the
ground state defines the phase of the system. Such Type II QPTs can be studied using a Hamil-
tonian as in Eq. (5), that interpolates between the different configurations by varying its control
parameters ξA,ξB,ω. The order parameters are taken to be the expectation value of n̂d in the
ground state wave function, |Ψ; L = 0+1 〉, and in its ΨA and ΨB components, Eq. (6), denoted
by 〈n̂d〉0+1 , 〈n̂d〉A and 〈n̂d〉B, respectively. The shape-evolution in each of the configurations A
and B is encapsulated in 〈n̂d〉A and 〈n̂d〉B, respectively. Their sum weighted by the probabili-
ties of the ΨA and ΨB components 〈n̂d〉0+1 = a2 〈n̂d〉A+ b2 〈n̂d〉B, portrays the evolution of the
normal-intruder mixing.

3 QPTs in the Zr isotopes

Along the years, the Z ≈ 40, A≈ 100 region was suggested by many works to have a ground
state that is dominated by a normal spherical configuration for neutron numbers 50–58 and
by an intruder deformed configuration for 60 onward. This dramatic change in structure is
explained in the shell model by the isoscalar proton-neutron interaction between non-identical
nucleons that occupy the spin-orbit partner orbitals π1g9/2 and ν1g7/2 [20]. The crossing
between configurations arises from the promotion of protons across the Z=40 subsell gap.
The interaction energy results in a gain that compensates the loss in single-particle and pairing
energy and a mutual polarization effect is enabled. Therefore, the single-particle orbitals at
higher intruder configurations are lowered near the ground state normal configuration, which
effectively reverses their order.

3.1 Model space

Using the framework of the IBM-CM, we consider 90
40Zr as a core and valence neutrons in

the 50–82 major shell. The normal A configuration corresponds to having no active protons
above Z = 40 sub-shell gap, and the intruder B configuration corresponds to two-proton ex-
citation from below to above this gap, creating 2p-2h states. Therefore, the IBM-CM model
space employed in this study, consists of [N]⊕ [N + 2] boson spaces with total boson number
N = 1,2, . . . 8 for 92−106Zr and N̄ = 7̄, 6̄ for 108,110Zr, respectively, where the bar over a number
indicates that these are hole bosons.

3.2 Hamiltonian and E2 transitions operator

In order to describe the spectrum of the Zr isotopes, we take a Hamiltonian that has a form as
in Eq. (5) with entries

ĤA(ε
(A)
d ,κ(A),χ) = ε(A)d n̂d +κ

(A) Q̂χ · Q̂χ , (12a)

ĤB(ε
(B)
d ,κ(B),χ) = ε(B)d n̂d + κ

(B) Q̂χ · Q̂χ +κ′(B) L̂ · L̂ +∆p , (12b)

where the quadrupole operator is given by Q̂χ = d†s+ s†d̃+χ(d†× d̃)(2), and L̂ =
p

10(d†d̃)(1)

is the angular momentum operator. Here d̃m = (−1)md−m and standard notation of angular
momentum coupling is used. The off-set energy between configurations A and B is ∆p, where
the index p denotes the fact that this is a proton excitation. The mixing term in Eq. (5) between
configurations (A) and (B) has the form [14–16] Ŵ = ω [ (d† × d†)(0) + (s†)2 ] +H.c., where
H.c. stands for Hermitian conjugate. The parameters are obtained from a fit, elaborated in
the appendix of Ref. [12].
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The E2 operator for two configurations is written as T̂ (E2) = e(A)Q̂(N)χ + e(B)Q̂(N+2)
χ , with

Q̂(N)χ = P̂†
NQ̂χ P̂N and Q̂(N+2)

χ = P†
N+2Q̂χ P̂N+2. The boson effective charges e(A) and e(B) are

determined from the 2+→ 0+ transition within each configuration [12], and χ is the same
parameter as in the Hamiltonian (12).

For the energy surface matrix (11), we calculate the expectation values of the Hamilto-
nians ĤA (12a) and ĤB (12b) in the intrinsic state of Section 2.3 with N and N+2 bosons
respectively, and a non-diagonal matrix element of the mixing term Ŵ between them. The
explicit expressions can be found in [12].

4 Results

In order to understand the change in structure of the Zr isotopes, it is insightful to examine
the evolution of different properties along the chain.

4.1 Evolution of energy levels

In Fig. 1, we show a comparison between selected experimental and calculated levels, along
with assignments to configurations based on Eq. (9) and to the closest DS based on Eq. (8),
for each state. In the region between neutron number 50 and 56, there appear to be two con-
figurations, one spherical (seniority-like), (A), and one weakly deformed, (B), as evidenced by
the ratio R4/2, which is R(A)4/2

∼= 1.6 and R(B)4/2
∼= 2.3 at at 52–56. From neutron number 58, there

is a pronounced drop in energy for the configuration (B) states and at 60, the two configura-
tions exchange their role, indicating a Type II QPT. At this stage, the B configuration appears
to undergo a U(5)-SU(3) Type I QPT, similarly to case of the Sm region [14, 21, 22]. Beyond
neutron number 60, the B configuration is strongly deformed, as evidenced by the small value
of the excitation energy of the state 2+1 , E2+1

=139.3 keV and by the ratio R(B)4/2=3.24 in 104Zr.
At still larger neutron number 66, the ground state band becomes γ-unstable (or triaxial) as

50 54 58 62 66 70
Neutron number

0

1

2

3

4

E 
(M

eV
)

0 +
1

0 +
2

2 +
1

4 +
1

2 +
2

4 +
2

50 54 58 62 66 70
Neutron number

0 +
1

2 +
1

0 +
2

2 +
2

4 +
1

4 +
2

(A) U(5)
(B) U(5)
(B) SU(3)
(B) SO(6)

(a) Exp (b) Calc

Figure 1: Comparison between (a) experimental and (b) calculated energy levels
0+1 , 2+1 , 4+1 , 0+2 , 2+2 , 4+2 . Empty (filled) symbols indicate a state dominated by the nor-
mal A configuration (intruder B configuration), with assignments based on Eq. (9).
The symbol [ , ▲, �], indicates the closest dynamical symmetry [U(5), SU(3),
SO(6)] to the level considered, based on Eq. (8). Note that the calculated values
start at neutron number 52, while the experimental values include the closed shell
at 50. References for the data can be found in [12].
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evidenced by the close energy of the states 2+2 and 4+1 , E2+2
= 607.0 keV, E4+1

= 476.5 keV, in
106Zr, and especially by the results E4+1

=565 keV and E2+2
=485 keV for 110Zr of Ref. [23], a

signature of the SO(6) symmetry. In this region, the B configuration undergoes a crossover
from SU(3) to SO(6).

4.2 Evolution of configuration content

We examine the configuration change for each isotope, by calculating the evolution of the
probability b2, Eq. (9), of the 0+1 and 2+1 states. The left panels of Fig. 2 shows the percentage
of the wave function within the B configuration as a function of neutron number across the
Zr chain. The rapid change in structure of the 0+1 state (bottom left panel) from the normal
A configuration in 92−98Zr (small b2 probability) to the intruder B configuration in 100−110Zr
(large b2 probability) is clearly evident, signaling a Type II QPT. The configuration change
appears however sooner in the 2+1 state (top left panel), which changes to configuration B
already in 98Zr, in line with [24]. Outside a narrow region near neutron number 60, where
the crossing occurs, the two configurations are weakly mixed and the states retain a high level
of purity, especially for neutron number larger than 60.

4.3 Evolution of symmetry content

We examine the changes in symmetry of the lowest 0+ and 2+ states within the B configuration,
which undergoes a Type I QPT. In the right bottom panel of Fig. 2 the red dots represent the
percentage of the U(5) nd = 0 component in the wave function, P(N+2,L=0)

nd=0 of Eq. (8). It is
large (≈ 90%) for neutron number 52–58 and drops drastically (≈ 30%) at 60. The drop
means that other nd ̸=0 components are present in the wave function and therefore this state
becomes deformed. Above neutron number 60, the nd = 0 component drops almost to zero
(and rises again a little at 70), indicating the state is strongly deformed. To understand the
type of DS associated with the deformation above neutron number 60, we add in blue triangles
the percentage of the SU(3) (λ,µ) = (2N + 4,0) component, P(N+2,L=0)

(λ,µ)=(2N+4,0) of Eq. (8) for 60–
66. For neutron number 60, it is moderately small (≈ 35%), at neutron number 62 it jumps
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Figure 2: Left panels: percentage of the wave functions within the intruder B-
configuration [the b2 probability in Eq. (6)], for the ground 0+1 (bottom) and excited
2+1 (top) states in 92−110Zr. Right panels: evolution of symmetries for the lowest
0+ (bottom) and 2+ (top) state of configuration B along the Zr chain. Shown are
the probabilities of selected components of U(5) ( ), SU(3) (▲), SO(6) (�) and
SO(5) ( ), obtained from Eq. (8). For neutron numbers 52–58 (60–70), 0+B corre-
sponds to the experimental 0+2 (0+1 ) state. For neutron numbers 52–56 (58–70), 2+B
corresponds to the experimental 2+2 (2+1 ) state.
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U(5) U(5) → SU(3) SU(3) → SO(6)
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Figure 3: (a) Evolution of order parameters along the Zr chain, normalized (see
text). (b) B(E2) values in W.u. for 2+→ 0+ transitions in the Zr chain. The solid line
(symbols  , ■, ▲, �) denote calculated results (experimental results). Dotted lines
denote calculated E2 transitions within a configuration. The data for 94Zr, 96Zr, 100Zr,
102Zr and (104Zr, 106Zr) are taken from [25], [26], [27], [28], [29], respectively. For
98Zr (neutron number 58), the experimental values are from [30] (�), from [31]
(▲), and the upper and lower limits (black bars) are from [24,27].

(≈ 85%) and becomes maximal at 64 (≈ 92%). This serves as a clear evidence for a U(5)-
SU(3) Type I QPT. At neutron number 66 the SU(3) (λ,µ)=(2N+4,0) component it is lowered,
and one sees by the green diamonds the percentage of the SO(6) σ = N + 2 component,
P(N+2,L=0)
σ=N+2 of Eq. (8). The latter becomes dominant for 66–70 (≈ 99%), suggesting a crossover

from SU(3) to SO(6).
In order to further elaborate the Type I QPT within configuration B from U(5) to SU(3)

and the subsequent crossover to SO(6), we examine also the evolution of SO(5) symmetry.
The gray histograms in the right panel of Fig. 2 depict the probability of the τ=0 component
of SO(5), P(N+2,L=0)

τ=0 of Eq. (8), for 0+B . For neutron numbers 52–56, the 0+B state is composed
mainly of a single (nd =0,τ=0) component, appropriate for a state with good U(5) DS. For
neutron number 58, the larger τ= 0 but smaller nd = 0 probabilities imply the presence of
additional components with (nd ̸=0,τ=0). For neutron numbers 60–64, the τ=0 probability
decreases, implying admixtures of components with (nd ̸= 0,τ ̸= 0), appropriate for a state
with good SU(3) DS. For neutron numbers 66–70, the τ = 0 probability increases towards
its maximum value at 70, appropriate for a crossover to SO(6) structure with good SO(5)
symmetry.

In the top right panel of Fig. 2 we observe a similar trend for the 2+B state. For neutron
numbers 52–58, it is dominated by a single (nd = 1,τ = 1) component. For neutron num-

ber 60, P
(N+2,L=2+B )
nd=1 is smaller than P

(N+2,L=2+B )
τ=1 , indicating the onset of deformation. For 62–

64, P
(N+2,L=2+B )
nd=1 is much smaller than P

(N+2,L=2+B )
τ=1 , implying admixtures of components with

(nd ̸= 1,τ ̸= 1). For neutron numbers 66–70, P
(N+2,L=2+B )
nd=1 remains small but P

(N+2,L=2+B )
τ=1 in-

creases towards its maximum value at 70.

4.4 Evolution of order parameters

The configuration and symmetry analysis of Sections 4.2 and 4.3 suggest a situation of si-
multaneous occurrence of Type I and Type II QPTs. The order parameters can give further
insight to these QPTs. Fig. 3(a) shows the evolution along the Zr chain of the order param-
eters (〈n̂d〉A , 〈n̂d〉B in dotted and 〈n̂d〉0+1 in solid lines), normalized by the respective boson

numbers, 〈N̂〉A=N , 〈N̂〉B=N+2, 〈N̂〉0+1 =a2N+b2(N+2). The order parameter 〈n̂d〉0+1 is close
to 〈n̂d〉A for neutron number 52–58 and coincides with 〈n̂d〉B at 60 and above. The clear jump
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Figure 4: Contour plots in the (β ,γ) plane of the lowest eigen-potential surface, E−(β ,γ),
for the 92−110Zr isotopes.

and change in configuration content from 58 to 60 indicates a Type II phase transition [8],
with weak mixing between the configurations. Configuration A is spherical for all neutron
numbers, and configuration B is weakly-deformed for neutron number 52–58. From neutron
number 58 to 60 we see a sudden increase in 〈n̂d〉B that continues towards 64, indicating a
U(5)-SU(3) Type I phase transition. Then, we observe a decrease from neutron number 66
onward, due in part to the crossover from SU(3) to SO(6) and in part to the shift from bo-
son particles to boson holes after the middle of the major shell 50–82. These conclusions are
stressed by an analysis of other observables [12], in particular, the B(E2) values. As shown
in Fig. 3(b), the calculated B(E2)’s agree with the experimental values and follow the same
trends as the respective order parameters.

4.5 Classical analysis

In Fig. 4, we show the calculated lowest eigen-potential E−(β ,γ), which is the lowest eigen-
value of the matrix Eq. (11). These classical potentials confirm the quantum results, as they
show a transition from spherical (92−98Zr), Figs. 4(a)-(d), to a double-minima potential that is
almost flat-bottomed at 100Zr, Fig. 4(e), to prolate axially deformed (102−104Zr), Figs. 4(f)-(g),
and finally to γ-unstable (106−110Zr), Figs. 4(h)-(j).

5 Conclusions and Outlook

The algebraic framework of the IBM-CM allows us to examine QPTs using both quantum and
classical analyses. We have employed this analysis to the Zr isotopes with A=92–110, which
exhibit a complex structure that involves a shape-phase transition within the intruder config-
uration (Type I QPT) and a configuration-change between normal and intruder (Type II QPT),
namely IQPTs. This was done by analyzing the energies, configuration and symmetry content
of the wave functions, order parameters and E2 transition rates, and the energy surfaces. Fur-
ther analysis of other observables supporting this scenario is presented in [12]. Recently, we
have also exemplified the notion IQPTs in the odd-mass 41Nb isotopes [13] and it would be
interesting to examine the notion of IQPTs in other even-even and odd-mass chains of isotopes
in the Z ≈ 40, A≈ 100 region and other physical systems.
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