

Spin degrees of freedom incorporated in conformal group: Introduction of an intrinsic momentum operator

Seiichi Kuwata*

Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka, Asaminami-ku, Hiroshima 731-3194, Japan

* kuwata@hiroshima-cu.ac.jp

34th International Colloquium on Group Theoretical Methods in Physics Strasbourg, 18-22 July 2022 doi:10.21468/SciPostPhysProc.14

Abstract

Considering spin degrees of freedom incorporated in the conformal generators, we introduce an intrinsic momentum operator π_{μ} , which is feasible for the Bhabha wave equation. If a physical state ψ_{ph} for spin s is annihilated by the π_{μ} , the degree of ψ_{ph} , deg ψ_{ph} , should equal twice the spin degrees of freedom, 2(2s + 1) for a massive particle, where the multiplicity 2 indicates the chirality. The relation $\deg \psi_{\rm ph} = 2(2s+1)$ holds in the representation $R_5(s,s)$, irreducible representation of the Lorentz group in five dimensions.

© O Copyright S. Kuwata.

This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation.

Received 16-12-2022 Accepted 11-08-2023 Published 24-11-2023

doi:10.21468/SciPostPhysProc.14.034

Introduction 1

Conformal symmetry [1] has many applications in string theory and critical phenomena in condensed matter and statistical physics. For a scalar field, the conformal generators are composed of dilatation D, momentum P_u , special conformal K_u , and angular momentum L_{uv} . For a multicomponent field Φ , where spin degrees of freedom is incorporated as $L_{\mu\nu} \to L_{\mu\nu} + s_{\mu\nu}$, the D and K_{μ} are generalized as $D \to D + \Delta$ and $K_{\mu} \to K_{\mu} + \kappa_{\mu}$, while the P_{μ} , in an ordinary context [1], remains unchanged as $P_{\mu} \to P_{\mu}$. The unchangeability of P_{μ} may be because Φ transforms as a scalar under spacetime translation. If we assume that $\Phi(x) \to \Phi'(x') = \Phi(x)$ under $x \to x' = x + a$, that is, $\Phi'(x) = \Phi(x - a) = e^{-a \cdot P} \Phi(x)$, we find it unnecessary to introduce an intrinsic momentum operator π_{μ} as $P_{\mu} \to P_{\mu} + \pi_{\mu}$. Even if we admit the scalar property of $\Phi(x)$ under $x \to x + a$, we can introduce π_{μ} in such a way that the π_{μ} may annihilate physical states.

This paper aims to introduce such an intrinsic momentum operator π_{μ} , to find that π_{μ} can realize for a matrix structure in parafermion-based Dirac-like equations, such as spin-1 Kemmer equation [2], and more generally, Bhabha equation [3]. In Sec. 2, we give some preliminaries concerning the conformal algebra, together with its Casimir operator. In Secs. 3-5, we deal with the π_u in the case of spin $\frac{1}{2}$, 1, $\frac{3}{2}$, respectively. We devote Sec. 6 to the summary.

2 Preliminaries

We begin with the commutation relations between the intrinsic conformal generators Δ , π_{μ} , κ_{μ} , and $s_{\mu\nu}$, corresponding to D, P_{μ} , K_{μ} , and $L_{\mu\nu}$, respectively. If the intrinsic conformal generators satisfy the same commutation relations as ordinary conformal generators, we can write the non-vanishing commutation relations as

$$[\Delta, \pi_{\mu}] = i\pi_{\mu}, \quad [\Delta, \kappa_{\mu}] = -i\kappa_{\mu}, \quad [\kappa_{\mu}, \pi_{\nu}] = 2i(g_{\mu\nu}\Delta - s_{\mu\nu}), \tag{1}$$

$$[\pi_{\rho}, s_{\mu\nu}] = i(g_{\rho\mu}\pi_{\nu} - g_{\rho\nu}\pi_{\mu}), \quad [\kappa_{\rho}, s_{\mu\nu}] = i(g_{\rho\mu}\kappa_{\nu} - g_{\rho\nu}\kappa_{\mu}), \tag{2}$$

$$[s_{\mu\nu}, s_{\rho\sigma}] = i(g_{\nu\rho}s_{\mu\sigma} + g_{\mu\sigma}s_{\nu\rho} - g_{\mu\rho}s_{\nu\sigma} - g_{\nu\sigma}s_{\mu\rho}), \tag{3}$$

while the vanishing commutation relations are given by

$$[\Delta, s_{\mu\nu}] = [\pi_{\mu}, \pi_{\nu}] = [\kappa_{\mu}, \kappa_{\nu}] = 0.$$
 (4)

It should be remarked that (1)-(4) are invariant under the scaling of π_{μ} and κ_{μ} , and also under the substitution between π_{μ} and κ_{μ} as

$$(\Delta, \pi_{\mu}, \kappa_{\mu}, s_{\mu\nu}) \to (\Delta, \lambda \pi_{\mu}, \lambda^{-1} \kappa_{\mu}, s_{\mu\nu}), \tag{5}$$

$$(\Delta, \pi_{\mu}, \kappa_{\mu}, s_{\mu\nu}) \to (-\Delta, \kappa_{\mu}, \pi_{\mu}, s_{\mu\nu}), \tag{6}$$

where $\lambda \in \mathbb{C} \setminus \{0\}$, and use has been made of $s_{\nu\mu} = -s_{\mu\nu}$ in (6). Note that (5) represents the "chiral" transformation $g \to g' = \mathrm{e}^{\theta\Delta} g \, \mathrm{e}^{-\theta\Delta}$ ($g \in \{\Delta, \pi_{\mu}, \kappa_{\mu}, s_{\mu\nu}\}$), where $\lambda = \mathrm{e}^{\mathrm{i}\theta}$.

To check the irreducibility of the representation for the conformal group, it may be available to obtain the Casimir operator C. Note that although the C is invariant under (5) due to the chiral transformation, the invariance of C under (6) is somewhat naive. For simplicity, we consider (3+1) spacetime dimensions, where the conformal algebra is isomorphic to $\mathfrak{so}(4,2)$ [1]. In this case, the order of C is given by 2, 3, 4, as in the case of $\mathfrak{so}(6)$ [4]. Explicitly, we have $C = C_2$, C_3 , C_4 (the index i in C_i represents the order) as [5]

$$C_{2} = \frac{1}{2} s_{\mu\nu} s^{\mu\nu} + \frac{1}{2} \{ \kappa_{\mu}, \, \pi^{\mu} \} - \Delta^{2} \,, \qquad C_{3} = \epsilon^{\mu\nu\rho\sigma} \left(\Delta s_{\mu\nu} + \{ \kappa_{\mu}, \, \pi_{\nu} \} \right) s_{\rho\sigma} \,,$$

$$C_{4} = \frac{1}{2} \mathcal{J}_{\mu\nu} \mathcal{J}^{\mu\nu} - \frac{1}{2} \{ \mathcal{J}_{K,\mu}, \, \mathcal{J}_{P}^{\mu} \} - \frac{1}{16} \mathcal{J}^{2} \,, \tag{7}$$

where $\mathcal{J}^{\mu\nu}$, \mathcal{J}^{μ}_{K} , \mathcal{J}^{μ}_{P} , and \mathcal{J} are given by $\mathcal{J}^{\mu\nu}=\epsilon^{\mu\nu\rho\sigma}\left(\Delta s_{\rho\sigma}+\frac{1}{2}\{\kappa_{\rho},\pi_{\sigma}\}\right)$, $\mathcal{J}^{\mu}_{K}=\epsilon^{\mu\nu\rho\sigma}\kappa_{\nu}s_{\rho\sigma}$, $\mathcal{J}^{\mu}_{P}=\epsilon^{\mu\nu\rho\sigma}\pi_{\nu}s_{\rho\sigma}$, and $\mathcal{J}=\epsilon^{\mu\nu\rho\sigma}s_{\mu\nu}s_{\rho\sigma}$, with $\epsilon^{\mu\nu\rho\sigma}$ the totally anti-symmetric Levi-Civita tensor ($\epsilon^{0123}=1$), and $\{A,B\}=AB+BA$. It confirms that all the C's are invariant under (5). If the $\epsilon^{\mu\nu\rho\sigma}$ remains invariant under (6), the C_{i} 's transform as $(C_{2},C_{3}C_{4})\rightarrow(C_{2},-C_{3},C_{4})$. However, the invariance of $\epsilon^{\mu\nu\rho\sigma}$ under (6) is not so trivial, which will be discussed at the end of the next section and afterward.

3 Spin $\frac{1}{2}$

This section deals with the Dirac equation, which describes a spin- $\frac{1}{2}$ particle. In this case, the spin operator $s_{\mu\nu}$, which satisfies (3), can be written using the gamma matrix γ_{μ} as $s_{\mu\nu}=\mathrm{i}\frac{1}{4}[\gamma_{\mu},\gamma_{\nu}]$, where $\{\gamma_{\mu},\gamma_{\nu}\}=2g_{\mu\nu}\mathbb{1}$. The next thing is to obtain π_{μ} from the first equality in (2) and $[\pi_{\mu},\pi_{\nu}]=0$. Considering that $[\gamma_{\rho},s_{\mu\nu}]=\mathrm{i}(g_{\rho\mu}\gamma_{\nu}-g_{\rho\nu}\gamma_{\mu})$, one may suspect that π_{μ} may be given by $\pi_{\mu}=\lambda\gamma_{\mu}$ ($\lambda\in\mathbb{C}$), which, however, would not be appropriate due to $[\pi_{\mu},\pi_{\nu}]\neq0$. This conclusion is not the end of the story. For an even spacetime

dimension, there is a matrix γ_5 such that $\gamma_5^2 = 1$ and $\{\gamma_5, \gamma_\mu\} = 0$. Under the existence of γ_5 , the choice of $\pi_\mu = \lambda(\gamma_\mu \pm \gamma_5 \gamma_\mu)$ satisfies the first equality in (2) and $[\pi_\mu, \pi_\nu] = 0$. In a similar way, we obtain $\kappa_\mu = \lambda'(\gamma_\mu \pm \gamma_5 \gamma_\mu)$ from the second equality in (2) and $[\kappa_\mu, \kappa_\nu] = 0$. The relation between λ and λ' , along with the remaining generator Δ , can be derived from (1). To summarize, we have

$$\Delta = \pm \frac{1}{2} i \gamma_5, \quad \pi_{\mu} = M \left(\frac{\mathbb{1} \pm \gamma_5}{2} \right) \gamma_{\mu}, \quad \kappa_{\mu} = \frac{1}{M} \left(\frac{\mathbb{1} \mp \gamma_5}{2} \right) \gamma_{\mu}, \quad s_{\mu\nu} = \frac{i}{4} [\gamma_{\mu}, \gamma_{\nu}], \quad (8)$$

where the multiplier $M \in \mathbb{C} \setminus \{0\}$ corresponds to λ in (5). Note that the substitution (6) can be interpreted as $\gamma_5 \to -\gamma_5$. Note also that $[\Delta, s_{\mu\nu}] = 0$.

The fundamental property of π_{μ} (or κ_{μ}) is the nilpotence of order two. Let $a_{\mu}^{\pm} := (\mathbb{1} \pm \gamma_5)\gamma_{\mu}$. Then it follows that

$$a_{\nu}^{+}a_{\mu}^{+} = 0 = a_{\nu}^{-}a_{\mu}^{-}. \tag{9}$$

To be more exact, we can show that

$$\begin{cases} a_{\mu}^{+} P_{1} = 0, \\ a_{\mu}^{-} P_{2} = 0, \end{cases} \begin{cases} a_{\mu}^{+} P_{2} = 2 P_{1} \gamma_{\mu}, \\ a_{\mu}^{-} P_{1} = 2 P_{2} \gamma_{\mu}, \end{cases}$$
(10)

where $P_1 = \frac{1}{2}(\mathbb{1} + \gamma_5)$ and $P_2 = \frac{1}{2}(\mathbb{1} - \gamma_5)$ represent the projection operators such that $P_1 + P_2 = \mathbb{1}$ and $P_i P_j = \delta_{ij} P_i$. In the Dirac theory, it is well known that P_1 and P_2 are employed in the chiral decomposition. In this sense, (10) can be derived without recognizing the concept of the intrinsic momentum operator π_μ ; the existence of π_μ will play a substantial role in higher spin states.

Now we give some properties concerning the Casimir operators C_i 's in (7). First, we discuss the invariance of C_3 under (6). Recalling that the substitution (6) corresponds to $\gamma_5 \to -\gamma_5$, and that $\gamma_5 = -\frac{1}{4!} \mathrm{i} \, \epsilon^{\mu\nu\rho\sigma} \gamma_\mu \gamma_\nu \gamma_\rho \gamma_\sigma$, we find that $\gamma_5 \to -\gamma_5$ implies that $\epsilon^{\mu\nu\rho\sigma} \to -\epsilon^{\mu\nu\rho\sigma}$. In this sense, C_3 remains invariant under (6). Next, we obtain the relation between C_2 and C_4 . Note that $\mathcal{J}^{\mu\nu}$ can be rewritten as $3\Delta\epsilon^{\mu\nu\rho\sigma}s_{\rho\sigma}$, which leads to $\mathcal{J}_{\mu\nu}\mathcal{J}^{\mu\nu} = 9s_{\mu\nu}s^{\mu\nu}$. In a similar way, we have $\{\mathcal{J}_{K,\mu}, \mathcal{J}_p^\mu\} = -9\{\kappa_\mu, \pi^\mu\}$ and $\frac{1}{16}\mathcal{J}^2 = 9\Delta^2$. Thus we obtain $C_4 = 9C_2$. Anyway, there is no such operator (except a scalar multiple of identity 1) that is commutative with all the γ_μ 's, so that the C_i 's are given by a multiple of identity 1 as $(C_2, C_3, C_4) = \frac{15}{4}(1, 2^2, 3^2)$ 1.

4 Spin 1

This section deals with relativistically invariant wave equations for spin s=1. For the sake of simplicity, spacetime dimension d is restricted to (3+1). We summarize the wave functions for a free massive particle in Table 1, to find that the π_{μ} is allowed for the KDP equation but not for the Proca and the WSG equations. This is because the $n \times n$ matrix π_{μ} such that $[\pi_{\rho}, s_{\mu\nu}] = \mathrm{i}(g_{\rho\mu}\pi_{\nu} - g_{\rho\nu}\pi_{\mu})$ is allowed for n=10, but not for n=4,6. In what follows, we concentrate on the KDP equation, where the β_{μ} 's satisfy the trilinear relations

$$\beta_{\mu}\beta_{\nu}\beta_{\rho} + \beta_{\rho}\beta_{\nu}\beta_{\mu} = g_{\mu\nu}\beta_{\rho} + g_{\rho\nu}\beta_{\mu} \qquad (\mu, \nu, \rho \in \{0, 1, 2, 3\}). \tag{11}$$

Note that β_i (i=1,2,3) can be identified with the non-relativistic spin-1 operator s_i in the sense that the s_i 's satisfy $s_is_js_k + s_ks_js_i = \delta_{ij}s_k + \delta_{kj}s_i$.

For n=10, it is known that [2] there is a matrix ω (= β_5) which is given by extending (11) to those for μ , ν , $\rho \in \{0, 1, 2, 3, 5\}$ with $g_{5\mu} = g_{\mu 5} = \delta_{5\mu}$. Explicitly, we have

$$\omega^{3} = \omega, \qquad \begin{cases} \{\omega^{2}, \, \beta_{\mu}\} = \beta_{\mu}, \\ \omega \beta_{\mu} \omega = 0, \end{cases} \qquad \begin{cases} \beta_{\mu} \omega \beta_{\nu} + \beta_{\nu} \omega \beta_{\mu} = 0, \\ \omega \beta_{\mu} \beta_{\nu} + \beta_{\nu} \beta_{\mu} \omega = g_{\mu\nu} \omega. \end{cases}$$
(12)

Table 1: Lorentz invariant wave equations for s=1 and d=3+1. For the Proca equation, the upperscript in $\psi=(A^0,A^1,A^2,A^3)$ represents the Lorentz vector component, and $\Lambda_{\mu\nu}$ represents the generator of the Lorentz transformation. For the WSG equation, s_i (i=1,2,3) is given by the (3 × 3) representation matrix for the non-relativistic spin-1 operator.

Name	Equation	Degree of ψ	$s_{\mu u}$	π_{μ}
Proca	$(\Box + m^2)A^{\mu} = \partial^{\mu}(\partial \cdot A)$	4	$\Lambda_{\mu u}$	NA
WSG [6,7]	$(\Box + \gamma_{\mu\nu}\partial^{\mu}\partial^{\nu})\psi = 2m_0^2\psi$	6	$\begin{cases} s_{0i} = \frac{1}{i}\sigma_3 \otimes s_i \\ s_{ij} = \mathbb{1} \otimes \epsilon_{ijk} s_k \end{cases}$	NA
KDP [2,8,9]	$(\mathrm{i}\beta_{\mu}\partial^{\mu}+m)\psi=0$	10	$\mathrm{i}[eta_{\mu},eta_{ u}]$	\checkmark

Then the intrinsic conformal generators are given by

$$\Delta = \pm i\omega, \quad \pi_{\mu} = M\left(\beta_{\mu} \pm [\omega, \beta_{\mu}]\right), \quad \kappa_{\mu} = \frac{1}{M}\left(\beta_{\mu} \mp [\omega, \beta_{\mu}]\right), \quad s_{\mu\nu} = i[\beta_{\mu}, \beta_{\nu}]. \quad (13)$$

Note that (13) reduces to (8) under $(\beta_{\mu}, \omega) \to \frac{1}{2}(\gamma_{\mu}, \gamma_5)$. It is not so difficult to obtain from (11) and (12) the nilpotence of π_{μ} as

$$\alpha_{\mu}^{+}\alpha_{\nu}^{+}\alpha_{\rho}^{+} = 0 = \alpha_{\mu}^{-}\alpha_{\nu}^{-}\alpha_{\rho}^{-},$$
 (14)

where $\alpha_{\mu}^{\pm} := \beta_{\mu} \pm [\omega, \beta_{\mu}]$. To be more exact, we have the following relations:

$$\begin{cases} \alpha_{\mu}^{+} P_{1} = 0, & \begin{cases} \alpha_{\mu}^{+} P_{2} = 2P_{1} \beta_{\mu}, \\ \alpha_{\nu}^{-} P_{3} = 0, \end{cases} & \begin{cases} \alpha_{\nu}^{+} \alpha_{\mu}^{+} P_{3} = 2P_{1} A_{\mu\nu}, \\ \alpha_{\nu}^{-} \alpha_{\mu}^{-} P_{1} = 2P_{3} A_{\mu\nu}, \end{cases}$$
(15)

where $A_{\mu\nu} = \{\beta_{\mu}, \beta_{\nu}\} - g_{\mu\nu}\mathbb{1}$, and P_i represents a projection operators as $P_1 = \frac{1}{2}\omega(\omega + \mathbb{1})$, $P_2 = \mathbb{1} - \omega^2$, and $P_3 = \frac{1}{2}\omega(\omega - \mathbb{1})$, so that $\sum_{i=1}^3 P_i = \mathbb{1}$ and $P_i P_j = \delta_{ij} P_i$. Notice that in (15), the lower relations can derive from the corresponding upper ones through the substitution $\omega \to -\omega$. Notice further that $A_{\mu\nu}$ anticommutes with ω , that is

$$\{A_{\mu\nu},\,\omega\}=0. \tag{16}$$

The relation (16) leads to $[A^{\mu}_{\mu}, \omega^2] = 0$. Note that A^{μ}_{μ} and ω are Lorentz invariant in the sense that $[s_{\alpha\beta}, A^{\mu}_{\mu}] = 0 = [s_{\alpha\beta}, \omega]$. This relation implies that A^{μ}_{μ} can be written as $A^{\mu}_{\mu} = \sum_{i=0}^{2} c_i \omega^i$ $(c_i \in \mathbb{C})$, where c_i $(i \geq 3)$ is not necessary due to $\omega^3 = \omega$. Here we have assumed that there is no Lorentz invariant other than $\mathbb{1}, \omega$, and ω^2 . In this case, we find that $c_0 + c_2 = 0 = c_1$ from $\{A^{\mu}_{\mu}, \omega\} = 0$ by (16), and that $c_0 = 2$ from $\{\beta_{\nu}, \beta_{\mu}\beta^{\mu}\} = 5\beta_{\nu}$ by (11) and $\{\beta_{\nu}, \omega^2\} = \beta_{\nu}$ by (12). Eventually, we have

$$\beta_{\mu}\beta^{\mu} = P_2 + 2\mathbb{1}. \tag{17}$$

Actually, the relation (17) holds in the ten-dimensional representation [2] for (11) and (12), which corresponds to the adjoint representation of the Lorentz group in five dimensions (for the adjoint representation, we have $\binom{5}{2} = 10$ Lorentz group generators). For later convenience, we rewrite $\frac{1}{2}s_{\mu\nu}s^{\mu\nu}$ using P_2 as

$$\frac{1}{2}s_{\mu\nu}s^{\mu\nu} = 4\mathbb{1} - \mathsf{P}_2,\tag{18}$$

where we have used (17), together with $P_2^2 = P_2$.

As was mentioned in Sec. 1, the π_{μ} should annihilate the physical state. To check the validity, we show that the rank of P_k (or equivalently, the trace of P_k) for k=1,3 equals the spin degrees of freedom. In the ten-dimensional representation, the eigenvalues of ω are given by 1,0,-1 appearing 3,4,3 times, respectively. Thus, we obtain

$$Rank(P_1) = Rank(P_3) = 3$$
, $Rank(P_2) = 4$.

This result is quite reasonable because the number "3" equals the spin degree of freedom for a massive particle for s=1. To confirm the validity, we calculate the 3-dimensional spin magnitude $\langle s \rangle^2 := s_{12}^{\ 2} + s_{23}^{\ 2} + s_{31}^{\ 2}$. Let $|\psi_{ph}^+\rangle = P_1|\psi\rangle$, $|\psi_{ph}^-\rangle = P_3|\psi\rangle$, and $|\psi_{un}\rangle = P_2|\psi\rangle$, in which we have $\alpha_{\mu}^{\pm}|\psi_{ph}^{\pm}\rangle = 0$. Recalling that $\langle s \rangle^2 (= \frac{1}{4}s_{\mu\nu}s^{\mu\nu}) = 2\mathbb{1} - \frac{1}{2}P_2$ by (18), and that $P_iP_j = \delta_{ij}P_i$, we obtain $\langle s \rangle^2|\psi_{ph}^{\pm}\rangle = s(s+1)|\psi_{ph}^{\pm}\rangle$ (s=1) and $\langle s \rangle^2|\psi_{un}\rangle = \frac{3}{2}|\psi_{un}\rangle$. These relations indicate that $|\psi_{ph}^{\pm}\rangle$ represents the spin-1 state, while $|\psi_{un}\rangle$ does not. Bearing these findings in mind, we can regard $|\psi_{ph}^{\pm}\rangle$ and $|\psi_{un}\rangle$ as physical and unphysical states, respectively.

Finally, we give some properties of the Casimir operator C. As in the case of $s=\frac{1}{2}$, the invariance of C_3 under (6) is guaranteed by the statement that $(\omega \to -\omega) \Longrightarrow (\epsilon^{\mu\nu\rho\sigma} \to -\epsilon^{\mu\nu\rho\sigma})$ by $\omega = -\frac{i}{4}\epsilon^{\mu\nu\rho\sigma}\beta_{\mu}\beta_{\nu}\beta_{\rho}\beta_{\sigma}$ [10, 11]. After a somewhat tedious calculation, we can write the C_i 's in (7) as $(C_2, C_3, C_4) = (9, 48, 144)\mathbb{1}$, which confirms the irreducibility of the tendimensional representation.

5 Spin $\frac{3}{2}$

In this section, we consider the (3+1)-dimensional Minkowski space, as in the case of s=1. Although the Rarita-Schwinger equation is well known as a relativistic invariant wave equation for $s=\frac{3}{2}$, the intrinsic momentum operator is not allowed, as in the case of the Proca equation. Instead, we adopt a Dirac-like wave equation for parafermion of order 3, namely (massive) Bhabha wave equation [3] (see Table 2).

Extending the polynomial relations among the non-relativistic spin operators s_i 's (i=1,2,3) to those among s_μ 's $(\mu=0,1,2,3)$ in a relativistically covariant way, we obtain

$$\begin{cases} s_{\mu}s_{\nu}s_{\alpha} + s_{\alpha}s_{\nu}s_{\mu} + g_{\mu\alpha}s_{\nu} = s_{\mu}s_{\alpha}s_{\nu} + s_{\nu}s_{\alpha}s_{\mu} + g_{\mu\nu}s_{\alpha}, \\ 0 = \left(s_{\mu}s_{\nu}s_{\alpha}s_{\beta} - \frac{5}{4}\{s_{\mu}, s_{\nu}\}g_{\alpha\beta} + \frac{9}{16}g_{\mu\nu}g_{\alpha\beta}\right) + (\text{perm. of } \mu, \nu, \alpha, \beta). \end{cases}$$
(19)

It may be convenient to rewrite the first relation of (19) as $[s_{\mu}, [s_{\nu}, s_{\alpha}]] = g_{\mu\nu}s_{\alpha} - g_{\mu\alpha}s_{\nu}$. Note that $\frac{1}{2}\gamma_{\mu}$ satisfies both relations in (19). This implies that there should exist a polynomial relation such that $p(s_0, s_1, s_2, s_3) = 0$ with $p(s_0, s_1, s_2, s_3)|_{s_{\mu} \to \frac{1}{2}\gamma_{\mu}} \neq 0$. However, we neglect, for the time being, such a polynomial relation because it is not irrelevant to the following discussion. Suppose that there exists an operator s_5 which satisfies (19) for $\mu, \nu, \alpha, \beta \in \{0, 1, 2, 3, 5\}$, with

Table 2: Lorentz invariant wave equations for $s=\frac{3}{2}$. For the Rarita equation, ψ is composed of four Dirac spinors as $\psi:=(\psi_0,\psi_1,\psi_2,\psi_3)$, where the subscript represents the Lorentz vector component, so that $\Lambda (= \{\Lambda_{\mu\nu}\}): \psi \mapsto \psi'$ acts as $(\psi')_{\mu} = \Lambda_{\mu}^{\nu} \psi_{\nu}$.

Name	Equation	Degree of ψ	$s_{\mu u}$	π_{μ}
Rarita-Schwinger	$(\epsilon^{\mu\nu\rho\sigma}\gamma_5\gamma_\nu\partial_\rho + mg^{\mu\sigma})\psi_\sigma = 0$	4 × 4	$\Lambda_{\mu\nu} + \frac{\mathrm{i}}{4} [\gamma_{\mu}, \gamma_{\nu}]$	NA
Bhabha	$(\mathrm{i} s_{\mu} \partial^{\mu} + m) \psi = 0$	20	$i[s_{\mu}, s_{\nu}]$	\checkmark

 $g_{5\mu}=g_{\mu 5}=\delta_{5\mu}$. Then the intrinsic conformal generators are given, as is analogous to the case of $s = \frac{1}{2}, 1$, by

$$\Delta = \pm i s_5, \quad \pi_{\mu} = M \left(s_{\mu} \pm [s_5, s_{\mu}] \right), \quad \kappa_{\mu} = \frac{1}{M} \left(s_{\mu} \mp [s_5, s_{\mu}] \right), \quad s_{\mu\nu} = i [s_{\mu}, s_{\nu}]. \tag{20}$$

Note that the first equality in (19), together with the existence of s_5 , is sufficient for (20); the second equality in (19) is not necessary for (20). Recalling that the first relation in (19) is satisfied for $s_{\mu} \to \frac{1}{2} \gamma_{\mu}$ ($s = \frac{1}{2}$) and for $s_{\mu} \to \beta_{\mu}$ (s = 1), we find it natural that the relation (20) is the same form as (8) and (13). For later convenience, we obtain some operators which anti-commute with s_5 . Such operators are exemplified as

$$\{s_5, A_{\mu}\} = 0 = \{s_5, A_{\rho \nu \mu} + (\text{perm. of } \rho, \nu, \mu)\},$$
 (21)

where $A_{\mu} = s_5 s_{\mu} s_5 - \frac{3}{4} s_{\mu}$, and $A_{\rho \nu \mu} = s_{\rho} s_{\nu} s_{\mu} - \frac{7}{4} g_{\rho \nu} s_{\mu}$. The projection operators P_i 's (i = 1, 2, 3, 4) can be written using the minimum polynomial f(x) with respect to s_5 as $P_i = \frac{1}{f'(\lambda_i)} \frac{f(s_5)1}{s_5 - \lambda_i 1}$, where $f(x) = \prod_{i=1}^4 (x - \lambda_i)$, with $\lambda_1 = \frac{3}{2}$, $\lambda_2 = \frac{1}{2}$, $\lambda_3 = -\frac{1}{2}$, $\lambda_4 = -\frac{3}{2}$. Let $s_\mu^{\pm} := s_\mu \pm [s_5, s_\mu]$. Then it follows that (see Appendix A)

$$\begin{cases} s_{\mu}^{+} \mathsf{P}_{1} = 0 \,, & \begin{cases} s_{\mu}^{+} \mathsf{P}_{2} = 2 \mathsf{P}_{1} X_{\mu} \,, \\ s_{\mu}^{-} \mathsf{P}_{3} = 2 \mathsf{P}_{4} X_{\mu} \,, \end{cases} & \begin{cases} s_{\nu}^{+} s_{\mu}^{+} \mathsf{P}_{3} = 2 \mathsf{P}_{1} X_{\nu \mu} \,, \\ s_{\nu}^{-} s_{\mu}^{-} \mathsf{P}_{2} = 2 \mathsf{P}_{4} X_{\nu \mu} \,, \end{cases} & \begin{cases} s_{\rho}^{+} s_{\nu}^{+} \mathsf{s}_{\mu}^{+} \mathsf{P}_{4} = \frac{4}{3} \mathsf{P}_{1} X_{\rho \nu \mu} \,, \\ s_{\rho}^{-} s_{\nu}^{-} s_{\mu}^{-} \mathsf{P}_{1} = \frac{4}{3} \mathsf{P}_{4} X_{\rho \nu \mu} \,, \end{cases}$$
(22)

where X_{μ} , $X_{\nu\mu}$ and $X_{\rho\nu\mu}$ are given by

$$X_{ii} = s_{ii}$$
, $X_{vii} = \{s_{v}, s_{ii}\} - sg_{vii}\mathbb{1}$, $X_{ovii} = [Y_{ovii} + (perm. of $\rho, v, \mu)]$,$

with $s = \frac{3}{2}$ and $Y_{\rho\nu\mu} := s_{\rho}s_{\nu}s_{\mu} - g_{\rho\nu}(ss_{\mu} + \frac{1}{2s}s_{5}s_{\mu}s_{5}) \rightarrow A_{\rho\nu\mu} - \frac{1}{3}g_{\rho\nu}A_{\mu}$ ($s = \frac{3}{2}$). The relations (22) lead to $s_{\mu}^{+}s_{\nu}^{+}s_{\rho}^{+}s_{\sigma}^{+}P_{i} = 0 = s_{\mu}^{-}s_{\nu}^{-}s_{\rho}^{-}s_{\sigma}^{-}P_{i}$ (i = 1, 2, 3, 4), from which, together wirh $\sum_{i=1}^{4} P_i = 1$, we obtain the nilpotence of s_u^{\pm} (of order 4) as

$$s_{\mu}^{+}s_{\nu}^{+}s_{\rho}^{+}s_{\sigma}^{+} = 0 = s_{\mu}^{-}s_{\nu}^{-}s_{\rho}^{-}s_{\sigma}^{-}. \tag{23}$$

Note that by (21), not only have we the anti-commutativity

$$\{X_{\rho\nu\mu}, s_5\} = 0$$
,

but also the anti-commutativities $\{\gamma_{\mu}, \gamma_{5}\} = 0$ and (16) can be rewritten using X_{μ} and $X_{\nu\mu}$ as

$$\{X_{\mu}^{(\frac{1}{2})}, \gamma_5\} = 0 = \{X_{\nu\mu}^{(1)}, \omega\},$$
 (24)

where $X_{\mu}^{(\frac{1}{2})}$ and $X_{\nu\mu}^{(1)}$, more generally, $X_{\nu\mu\dots}^{(s)}$ represents the corresponding $X_{\nu\mu\dots}$ for a given spin s. For example, we have $Y_{\rho\nu\mu}^{(\frac{1}{2})} = \frac{1}{8}\gamma_{\rho}\gamma_{\nu}\gamma_{\mu} - \frac{1}{8}g_{\rho\nu}\gamma_{\mu}$, and $Y_{\rho\nu\mu}^{(1)} = \beta_{\rho}\beta_{\nu}\beta_{\mu} - g_{\rho\nu}\beta_{\mu}$ by replacing $(s_{\rho}, s_{\nu}, s_{\mu}; s)$ in $Y_{\rho\nu\mu}$ with $\frac{1}{2}(\gamma_{\rho}, \gamma_{\nu}, \gamma_{\mu}; 1)$ and $(\beta_{\rho}, \beta_{\nu}, \beta_{\mu}; 1)$, respectively. Note further that we have the following vanishing relations:

$$X_{\nu\mu}^{(\frac{1}{2})} = X_{\rho\nu\mu}^{(\frac{1}{2})} = 0, \qquad X_{\rho\nu\mu}^{(1)} = 0,$$

which, in vew of (22), are due to the relations (9) and (14), respectively.

Now we discuss whether or not physical states can be given by $P_k|\psi\rangle$ (k=1,4) by calculating the rank of P_k . In the Bhabha theory [3] for $s = \frac{3}{2}$, we have two irreducible representations $R_5(\frac{3}{2}, \frac{3}{2})$ and $R_5(\frac{3}{2}, \frac{1}{2})$, where $R_5(s, \tilde{s})$ represents the spin-s Lorentz group representation in five dimensions. Let $S := \{s_1, s_2, s_3, is_0\}$. For $R_5(\frac{3}{2}, \frac{3}{2})$, the eigenvalues of $x \in S$

are $\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}$ appearing 4,6,6,4 times, respectively; while for $R_5(\frac{3}{2}, \frac{1}{2})$, the eigenvalues of $x \in S$ are $\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}$ appearing 2,6,6,2 times, respectively. If s_5 realizes, the eigenvalues of s_5 are identical with those of $x \in S$, so that

$$\operatorname{Rank}(\mathsf{P}_1) = \operatorname{Rank}(\mathsf{P}_4) = \begin{cases} 4 & \left(\mathsf{R}_5\left(\frac{3}{2},\frac{3}{2}\right)\right), \\ 2 & \left(\mathsf{R}_5\left(\frac{3}{2},\frac{1}{2}\right)\right), \end{cases} \qquad \operatorname{Rank}(\mathsf{P}_2) = \operatorname{Rank}(\mathsf{P}_3) = \begin{cases} 6 & \left(\mathsf{R}_5\left(\frac{3}{2},\frac{3}{2}\right)\right), \\ 6 & \left(\mathsf{R}_5\left(\frac{3}{2},\frac{1}{2}\right)\right). \end{cases}$$

Thus we obtain in the representation $R_5(\frac{3}{2},\frac{3}{2})$, the relation $R_5(P_1) = Rank(P_4) = 4$, the spin degrees of freedom for a spin- $\frac{3}{2}$ massive particle.

The analogous relation holds for a general spin s. Note that by a fundamental property of the projector, we have $\operatorname{Rank}(\mathsf{P}_i) = N_i$, where N_i represents the number of the eigenvalue (s+1-i) of s_5 . Note also that in the representation $\operatorname{R}_5(s,\tilde{s})$ ($\tilde{s}=s,s-1,\ldots$), the maximum and minimum eigenvalues of s_5 [that is, s and (-s), respectively] occur $(2\tilde{s}+1)$ times [3]. Considering these two remarks, we obtain in the representation $\operatorname{R}_5(s,s)$, the relation $\operatorname{Rank}(\mathsf{P}_1) = \operatorname{Rank}(\mathsf{P}_{2s+1}) = 2s+1$, the spin degrees of freedom. To confirm that $|\psi_{ph}^+\rangle = \mathsf{P}_1|\psi\rangle$ and $|\psi_{ph}^-\rangle = \mathsf{P}_{2s+1}|\psi\rangle$, in which we have $s_\mu^\pm|\psi_{ph}^\pm\rangle = 0$, can be regarded as physical states, we should further show $\langle s \rangle^2 |\psi_{ph}^\pm\rangle = s(s+1)|\psi_{ph}^\pm\rangle$, which, however, will be discussed elsewhere.

6 Conclusion

We have found that the intrinsic momentum operator $\pi_{\mu} = s_{\mu}^+, s_{\mu}^-$, which we do not introduce in the ordinary conformal group, is feasible for the Bhabha wave equation, provided that s_5 , corresponding to $\frac{1}{2}\gamma_5$ ($s=\frac{1}{2}$) and ω (s=1), exists. For a general spin s, we can write the intrinsic conformal generators as the same relations as (20) and those where $s_5 \to (-s_5)$, satisfying the invariance under (5) and (6). The fundamental property of π_{μ} is the nilpotence of order (2s+1). To be more exact, let P_i 's ($i=1,2,\ldots,2s+1$) be the projection operators concerning the s_5 as $P_i = \frac{1}{f'(\lambda_i)} \frac{f(s_5)1}{s_5 - \lambda_i 1}$, where $f(x) = \prod_{i=1}^{2s+1} (x - \lambda_i)$, $\lambda_i = s+1-i$. Then we have the same hierarchical relation as (22), where $X_{\mu}^{(\frac{1}{2})}$, $X_{\mu\nu}^{(1)}$,... anti-commute with γ_5 , ω ,..., respectively. As long as the wave function transforms as a scalar under the spacetime translation, either s_{μ}^+ or s_{μ}^- should annihilate a physical state, so that the relation Rank(P_k) = 2s+1 (k=1,2s+1) is required for a massive particle. Fortunately, this relation holds in the representation $R_5(s,s)$, irreducible representation of the Lorentz group in five dimensions.

Acknowledgements

The author is indebted to N. Aizawa, H. Fujisaka, and T. Kobayashi for valuable comments and discussions.

Funding information HCU Grant and JSPS KAKENHI (JP19K04394) partially supported S. K.

A Derivation of (22)

It is not so difficult to obtain X_{μ} and $X_{\nu\mu}$ by rewriting $s_{\mu}^+ \mathsf{P}_2$ and $s_{\nu}^+ s_{\mu}^+ \mathsf{P}_3$ in such a way that s_5 is located as leftward as possible. However, this procedure is not practical for the calculation of $X_{\rho\nu\mu}$ because $X_{\rho\nu\mu}$ hinges on s_5 so that we may not represent $X_{\rho\nu\mu}$ uniquely due to some

relations between s_5 and s_{μ} 's. In this sense, it would be better to adopt another approach. We start with the following relation:

$$s_{\mu}^{+} P_{4} = 2X_{\mu} P_{4} \qquad (X_{\mu} = s_{\mu}).$$
 (A.1)

Keeping the form of (A.1) without rearranging s_5 leftward, and applying s_{ν}^+ to both sides of (A.1) from the left, then we find it rather simple to obtain

$$s_{\nu}^{+}s_{\mu}^{+}\mathsf{P}_{4} = 2X_{\nu\mu}\mathsf{P}_{4} \quad \left(X_{\nu\mu} = \{s_{\nu}, s_{\mu}\} - s\mathbb{1}, \quad s = \frac{3}{2}\right),$$

where we have used $[s_{\nu}^+, s_{\mu}] = [s_{\nu}, s_{\mu}] + g_{\nu\mu}s_5$, together with the relation $s_5 P_4 = -s P_4$. Further application of s_0^+ leads to the relation

$$s_{\rho}^{+}s_{\nu}^{+}s_{\mu}^{+}\mathsf{P}_{4} = \frac{4}{3}X_{\rho\nu\mu}\mathsf{P}_{4} \quad (X_{\rho\nu\mu} = Y_{\rho\nu\mu} + (\text{perm. of } \rho, \nu, \mu))$$

where $Y_{\rho\nu\mu} = s_{\rho}s_{\nu}s_{\mu} - g_{\rho\nu}(ss_{\mu} + \frac{1}{2s}s_{5}s_{\mu}s_{5})$. A similar calculation yields $s_{\rho}^{-}s_{\nu}^{-}s_{\mu}^{-}P_{1} = \frac{4}{3}X_{\rho\nu\mu}P_{1}$. Recalling that $\{s_{5}, X_{\rho\nu\mu}\} = 0$ by (21) and noticing that $P_{1} \leftrightarrow P_{4}$ under the substitution $s_{5} \rightarrow -s_{5}$, we finally get the last relation in (22).

References

- [1] P. Di Francesco, P. Mathieu and D. Sénéchal, *Conformal field theory*, Springer, New York, USA, ISBN 9781461274759 (1997), doi:10.1007/978-1-4612-2256-9.
- [2] N. Kemmer, *The particle aspect of meson theory*, Proc. R. Soc. Lond., A. Math. Phys. Sci. **173**, 91 (1939), doi:10.1098/rspa.1939.0131.
- [3] H. J. Bhabha, *Relativistic wave equations for the proton*, Proc. Indian Acad. Sci. A **21**, 241 (1945).
- [4] F. Iachello, *Lie algebras and applications*, Springer, Berlin, Heidelberg, Germany, ISBN 9783540362364 (2006), doi:10.1007/3-540-36239-8.
- [5] Y. Murai, *On the group of transformations in six-dimensional space*, Prog. Theor. Phys. **9**, 147 (1953), doi:10.1143/ptp/9.2.147.
- [6] S. Weinberg, *Feynman rules for any spin*, Phys. Rev. **133**, B1318 (1964), doi:10.1103/PhysRev.133.B1318.
- [7] D. Shay and R. H. Good, *Spin-one particle in an external electromagnetic field*, Phys. Rev. **179**, 1410 (1969), doi:10.1103/PhysRev.179.1410.
- [8] R. J. Duffin, On the characteristic matrices of covariant systems, Phys. Rev. **54**, 1114 (1938), doi:10.1103/PhysRev.54.1114.
- [9] G. Petiau, Contribution à la théorie des équations d'ondes corpusculaires, in Memoires de la Classe des sciences, Palais des Académies, Brussels, Belgium (1936).
- [10] M. Harish-Chandra, *The correspondence between the particle and the wave aspects of the meson and the photon*, Proc. R. Soc. Lond., A. Math. Phys. Sci. **186**, 502 (1946), doi:10.1098/rspa.1946.0061.
- [11] Y. A. Markov and M. A. Markova, Generalization of Geyer's commutation relations with respect to the orthogonal group in even dimensions, Eur. Phys. J. C **80**, 1153 (2020), doi:10.1140/epjc/s10052-020-08605-4.