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Abstract

Current quantum theories of an elementary free particle assume unitary space inversion
and anti-unitary time reversal operators. In so doing robust classes of possible theories
are discarded. The present work shows that consistent theories can be derived through a
strictly deductive development from the principle of relativistic invariance and position
covariance, also with anti-unitary space inversion and unitary time reversal operators.
In doing so the class of possible consistent theories is extended for positive but also zero
mass particles. In particular, consistent theories for a Klein-Gordon particle are derived
and the non-localizability theorem for a non zero helicity massless particle is extended.
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1 Introduction

Relativistic quantum theories of single free particle can be deductively derived from the princi-
ples of relativistic invariance and covariance [1] - [4]; the first principle implies that the Hilbert
space of the quantum theory of a free particle must admit a transformer triplet (U , ◁S, ◁T)
formed by a unitary representation U of the universal covering group P̃↑+ of the proper or-
thochronus Poincaré group P↑+ and by the operators ◁S and ◁T, which realize the quantum
transformations implied by the transformations of P↑+, by space inversion ◁s and by time re-
versal ◁t, respectively. Yet the literature, except some works [5] [6] with specific aims different
from the present one, excludes transformer triplets with ◁S anti-unitary or with ◁T unitary, from
the pionering works of Wigner, Bargmann [1] - [3], to subsequent investigations [4] - [9] . In
so doing robust classes of triplets, and hence of possible theories, are lost. For instance, there
is no such a triplet for a consistent theory of Klein-Gordon particles.1

The motivation for the exclusion of ◁T unitary or ◁S anti-unitary was their implication of
negative spectral values for the hamiltonian operator P0, values deemed inconsistent because

1Klein-Gordon theory, indeed, was obtained through canonical quantization [10], [11], but it predicts inconsis-
tencies, such as negative probabilities [12].
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P0 was identified with the positive relativistic kinetic energy operator Ekin = µ(1 − Q̇2)−1/2,
where Q̇ is the “velocity” operator. But remark 3.1 shall show that the hamiltonian operator P0
does not always coincide with Ekin, so that a unitary ◁T or an anti-unitary ◁S can be consistent.

In the present article we show how a strictly deductive development of consistent quantum
theories of elementary free particle can be successfully carried out without apriori preclusions
about the unitary or anti-unitary character of ◁S or ◁T. As results, classes of consistent possible
theories for a positive mass particle are expicitly identified, which meaningfully extend the
class of the current theories; in particular, consistent theories of Klein-Gordon particle are
derived. Also in the case of a massless particle the approach extends the class of possible
theories. Furthermore, the non-localizability theorem for non zero helicity massless particles
is extended to the new theories with ◁T unitary or ◁S anti-unitary.

Section 2 shows how the relativistic invariance principle implies that every theory of ele-
mentary free particle admits a transformer triplet. In section 3 the class of possible consistent
theories for a positive mass particle is identified; this class contains consistent theories with ◁S
anti-unitary, e.g. consistent theories of Klein-Gordon particle. Section 4 identifies the class of
consistent theories for a zero mass elementary free particle; once again, besides the current
theories, it contains theories with ◁S anti-unitary or ◁T unitary. A more accurate and more gen-
eral argument is presented, which denies localizability of non zero helicity mass zero particles

2 General implications of Poincaré invariance

2.1 Prerequisites and notation

First of all, it is worth to fix the notaion for any quantum theory based on a Hilbert space H:

- Ω(H) denotes the set of all self-adjoint operators representing observables;

- S(H) denotes the set of all density operators ρ identified with quantum states;

- U(H) denotes the group of all unitary unitary operators;

- V(H) is the larger group of all unitary or anti-unitary operators.

The Poincaré group P is a very important mathematical structure for the present work, be-
cause it is the group of symmetry transformations for a free particle. P is the group generated
by P↑+∪{◁t, ◁s}, where P↑+ is the proper orthochronus Poincaré group, ◁t and ◁s are the time re-
versal and space inversion transformations. The proper orthochronus group P↑+ is a connected
group generated by 10 one-parameter subgroups, namely the subgroup T0 of time transla-
tions, the three subgroups T j ( j = 1, 2,3) of spatial translations, the three subgroups R j of
spatial rotations, the three subgroups B j of Lorentz boosts, relative to the three spatial axes
x j . Time reversal ◁t and space inversion ◁s are not connected with the identity transformation
e ∈ P . Given any vector x = (x0,x) ∈ IR4, where x0 is called the time component of x and
x = (x1, x2, x3) is called the spatial component of x , time reversal ◁t transforms x = (x0,x)
into (−x0,x) and space inversion ◁s transforms x = (x0,x) into (x0,−x).

The universal covering group of P↑+ is the semidirect product P̃↑+ = IR4⃝s SL(2, IC) of the
time-space translation group IR4 and the group SL(2, IC) = {Λ ∈ GL(2, IC) | detΛ = 1}. Ac-
cordingly, P̃↑+ is simply connected and there is a canonical homomorphism h : P̃↑+ → P↑+,
g̃ → h( g̃) ∈ P↑+, which restricts to an isomorphism within a small enough neighborhood of the
identity (0, 1I

IC2 ) of P̃↑+. By T̃0, T̃ j , R̃ j , B̃ j , L̃
↑
+ we denote the subgroups of P̃↑+ which correspond

to the subgoroups T0, T j ,R j , B j , L
↑
+ of P↑+, through the homomorphism h.
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2.2 Quantum theoretical implications for an elementary free particle

Since a free particle is a particular kind of isolated system, we begin by showing the derivation
of the general structure of the quantum theory of an isolated system. By F we denote the class
of the (inertial) reference frames that move uniformly with respect to each other. A physical
system is an isolated system if the following invariance principle holds.

IP The theory of an isolated system is invariant with respect to changes of frames within F .

If Σ belongs to F , then Σg denotes the frame related to Σ by such g, for every g ∈ P . Given an
observableA represented by the operator A∈ Ω(H), letMA be a procedure to measureA; then
the invariance principle implies that another measuring procedure M′A must exist, which is
with respect toΣg identical to what is MA with respect toΣ, otherwise the principle IP would
be violated. Hence, IP implies the existence [12] of the so called quantum transformation
associated to g, i.e., of a mapping

Sg : Ω(H)→ Ω(H) , A→ Sg[A] ,

where Sg[A] is the self-adjoint operator that represents the observable measured by M′A.

To every element g̃ of the covering group P̃↑+ we can associate the quantum transformation
Sh( g̃) ≡ S g̃ through the canonical homomorphism h. In [12] it is proved that the properties of
quantum transformations, under a continuity condition for g̃ → S g̃ , imply that

Imp.1. a continuous unitary representation U of P̃↑+ exists such that S g̃[A] = U g̃AU−1
g̃ , and

Imp.2. two operators ◁S, ◁T ∈ V(H) exist such that S
◁s[A] = ◁SA◁S−1 and S◁t[A] = ◁TA◁T−1.

Thus, the principle IP has the following fundamental implication.

(FI) The quantum theory of an isolated system admits a transformer triplet (U , ◁S, ◁T) such
that implications Imp.1 and Imp.2 hold.

Given a transformer triplet (U , ◁S, ◁T), let P0, Pj , J j , K j ∈ Ω(H) be the selfadjoint generators of
U; so [12], if g̃ ∈ T̃0 (resp., T̃ j , R̃ j , B̃ j) is identified by the parameter t (resp., a, θ , u), then

U g̃ = eiP0 t , (resp., U g̃ = eiPj a, U g̃ = eJ jθ , U g̃ = eiK j
1
2 ln 1+u

1−u ) . (1)

The generator P0 relative to time translations is the hamiltonian operator, so that

(i)
d
d t

At ≡ Ȧt = i[P0, At] , (ii)
d
d t
ρt ≡ ρ̇t = −i[P0,ρt] . (2)

By “elementary” free particle we mean an isolated system whose quantum theory has a
unique three-operator Q ≡ (Q1,Q2,Q3) with Q j ∈ Ω(H), called position operator, such that

(U(P̃↑+), ◁S, ◁T;Q) is an irreducible system of operators, and satisfying the following conditions.

(Q.1) [Q j ,Qk] = IO, for all j, k = 1,2, 3; this condition establishes that a measurement of
position yields all three values of the coordinates of the same specimen of the system.

(Q.2) For every g ∈ P , the position operator Q and the transformed position operator Sg[Q]
satisfy the transformation properties of position with respect to g.

As proved in [12], the transformer triplet (U , ◁S, ◁T) of the quantum theory of an elementary
free particle must be irreducible. Thus, the identification of all possible theories of an elemen-
tary free particle can be carried out in two steps: first by identifying all irreducible transformer
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triplets (U , ◁S, ◁T), and then selecting those triplets for which a unique position operator Q ex-
ists.

The mathematical group structural properties of P imply [12], [16] that each irreducible
triplet (U , ◁S, ◁T) is characterized by a number µ ∈ IC, called mass, with µ2 ∈ IR, such that
P2

0 − P2 = µ21I.

3 Quantum theories of positive mass elementary free particle

To identify the positive mass possible theories, we shall identify the irreducible triplets with
µ > 0; then, the triplets admitting a three-operator Q satisfying (Q.1), (Q.2) are singled out.

3.1 Positive mass irreducible triplets

Following [12], for any pair (µ, s), where µ > 0 and s is an integral or half-integral number
s ∈ 1

2 IN called spin, there is at least one irreducible triplet. Conversely, every irreducible triplet
is characterized by one such a pair. The following theorem yields a first classification.

Theorem 3.1. If (U , ◁S, ◁T) is an irreducible triplet with non-negative mass µ≥ 0, then
i) σ(P0) = (−∞,−µ] or σ(P0) = [µ,∞) or σ(P0) = (−∞,−µ]∪ [µ,∞), where σ(P0) is the
spectrum of P0.

Moreover, σ(P0) = (−∞,−µ]∪ [µ,∞) if and only if ◁T is unitary or ◁S is anti-unitary.
ii) Each class I(µ, s) of all irreducible triplets with positive mass µ > 0 decomposes as

I(µ, s) = I−(µ, s)∪ I+(µ, s)∪ I−+(µ, s) , (3)

where I−(µ, s), I+(µ, s) and I−+(µ, s) are respectively the classes of irreducible triplets with
σ(P0) = (−∞,−µ], σ(P0) = [µ,∞) and σ(P0) = (−∞,−µ]∪ [µ,∞).

The representation U of a triplet in I+(µ, s) or I−(µ, s) can be irreducible or not. We refer
to [12] for a complete identification of the irreducible triplets of I±(µ, s) with U irreducible.
Therein also instances of triplet in I+(µ, s) and I+(µ, s) with U reducible are explicitly shown.

The representation U of a triplet in I−+(µ, s) is always reducible [12], namely U = U+⊕U−

where U± belongs to a triplet in I±(µ, s). Moreover, U+ is reducible if and only if U− is
reducible.

The class of all irreducible triplets of I−+(µ, s) with U+ irreducible can be found in [12],
where also triplets of I−+(µ, s) with U+ reducible are concretely shown.

3.2 Theories of elementary free particle with positive mass

To determine the possible theories of positive mass elemetary free particle, we have to select
irreducible triplets of I(µ, s) identified in [12] for which a position Q satisfying (Q.1) and
(Q.2) exists. Condition (Q.2) can be only partially imposed. In fact, while the covariance
properties with respect to translations, rotations, time reversal and space inversion are known
and explicitly expressed by the following relations [12]

(i) [Q j , Pk] = iδ jk , (ii) [J j ,Qk] = iε jklQ l , (iii) ◁TQ= Q◁T , (iv) ◁SQ= −Q◁T , (4)

the explicit relations that establish the transformation properties of position with respect to
boosts are not available, yet [12]. However, conditions (4) are sufficient to uniquely identify
Q for some subclasses of irreducible triplets, according to the following theorem [12].
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Theorem 3.2. Given a triplet in I+(µ, 0) with U irreducible there is a unique three-
operator Q, satisfying (Q.1) and (4). Modulo unitary isomorphism, the resulting theory has
Hilbert space H = L2(IR3, IC2s+1, dν), where dν(p) = dp1dp2dp3

p0
with p0 =
p

µ2 + p2,

– generators defined by

(Pjψ)(p) = p jψ(p) , (P0ψ)(p) = p0ψ(p) , Jk = J(0)k , K j = K(0)j , (5)

where J(0)k = −i
�

pl
∂
∂ p j
− p j

∂
∂ pl

�

, K(0)j = ip0
∂
∂ p j

;

– ◁S= Υ , ◁T=KΥ , where K and Υ are defined by Kψ(p) =ψ(p), (Υψ)(p) =ψ(−p).

– The position operator is Q= F, where F is the Newton-Wigner [13] operator defined by

F j = i
∂

∂ p j
−

i
2p2

0

p j . (6)

Analogously, there is only one theory based on a triplet in I−(µ, 0) with U irreducible. It
differs from that in I+(µ, 0) by P0 = −p0 and K j = −K

(0)
j . There are only two theories based

on triplets of I−+(µ, 0) with U+ irreducible. They share the Hilbert space and generators:2

H = L2(IR3, IC2s+1, dν)⊕ L2(IR3, IC2s+1, dν)

Pj =

�

p j 0
0 p j

�

, P0 =

�

p0 0
0 −p0

�

, Jk =

�

J(0)k 0
0 J(0)k

�

, K j =

�

K(0)j 0

0 −K(0)j

�

. (7)

The two theories differ for the different pairs (◁S1, ◁T1), (◁S2, ◁T2) of space inversion and time

reversal operators; indeed ◁S1 = ◁S2 =

�

0 1
1 0

�

K while ◁T1 =KΥ
�

1 0
0 1

�

and ◁T2 =

�

0 1
1 0

�

.

For both theories the position operator is Q=

�

F 0
0 F

�

.

For all triplets with s > 0 (Q.1) and (4) are not sufficient [12] to completely identify Q.

Remark 3.1. In both theories based on I−+(µ, 0) the hamiltonian operator P0 has also negative

spectral values. But since the “velocity” is Q̇ = d
d t Q = i[P0,Q] =

� p
p0

0
0 − p

p0

�

, we compute

that Ekin = µ(1− Q̇2)−1/2 = p0 > IO, i.e. the theories are consistent.

3.3 Conclusions for the positive mass case

According to section 3.2, four classes of possible consistent theories are completely determined
by following the present approach, with U or U+ irreducible. However, the class of theories
based on I±(µ, 0) with U reducible and the class of theories based on I−+(µ, 0) with U+

reducible are not empty; concrete examples are given in [12]. They are new species theories,
i.e. they correspond to none of the known theories. Hence, our approach extends the class of
consistent theories of positive mass elementary spin 0 free particle.

Moreover, it provides consistent theories for Klein-Gordon particles. Indeed, by means of
a unitary transformation, operated by the operator Z = Z1Z2, where Z2 =

1p
p0

1I and Z1 is the

2If ψ ∈ L2(IR3, IC2s+1, dν)⊕ L2(IR3, IC2s+1, dν), we write ψ≡ψ1 ⊕ψ2 ≡
�

ψ1

ψ2

�

, ψ1,ψ2 ∈ L2(IR3, IC2s+1, dν)).
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inverse of the Fourier-Plancherel operator, the theories based on I−+(µ, 0) turn out to be equiv-
alent to two theories with Hilbert space Ĥ = Z

�

L2(IR3, dν)⊕ L2(IR3, dν)
�

≡ L2(IR3)⊕ L2(IR3),
with the self-adjoint generators

P̂j =

�

−i ∂∂ x j
0

0 −i ∂∂ x j

�

, P̂0 =
Æ

µ2 −∇2

�

1 0
0 −1

�

,

Ĵ j = −i
�

xk
∂

∂ x l
− x l

∂

∂ xk

�

�

1 0
0 1

�

, K̂ j =
1
2

�

x j

Æ

µ2 −∇2 +
Æ

µ2 −∇2 x j

�

�

1 0
0 −1

�

,

while ◁̂T1 = K
�

1 0
0 1

�

, ◁̂S1 = KΥ
�

0 1
1 0

�

, and ◁̂T2 =

�

0 1
1 0

�

and ◁̂S2 = KΥ
�

0 1
1 0

�

.

The position operator is Q̂ j =

�

x j 0
0 x j

�

.

These P̂j , Ĵ j , K̂ j , Ĥ are generators and Hilbert space of Klein-Gordon theory of spin-0
particle [10] [11]. However, since the position operator is the multiplication operator, the
position probability density must be ρ(t,x) = |ψ̂1(t,x)|2 + |ψ̂2(t,x)|2, hence non-negative.
Thus, our extended class includes consistent theories for Klein-Gordon particle free from the
inconsistent negative probabilities of the early theory.

It turns out [12] that in all triplets with non zero spin, the position operator Q is not
uniquely determined by (Q.1) and (4). On the other hand, the transformation properties
of position with respect to boosts, expressed for instance by a relation for [K j ,Qk], are not
available in order to better identify Q by imposing them.

To each solution Q of (Q.1) and (4) there correspond a different [K j ,Qk], in general. For
instance, Dirac theory for spin 1/2 particle [14] [15] is completely characterized by the relation
[K j ,Qk] = −

i
2(Q jQ̇k+Q̇kQ j) satisfied by the posistion operator of Dirac theory; however, other

solutions Q yielding other relations for [K j ,Qk] are theoretically consistent too.

4 Quantum theories of zero mass elementary free particle

Analogously to the positive mass case, the possible quantum theories of zero mass particle are
determined first by identifying the class I0 of the irreducible transformer triplets with µ = 0,
and then by selecting those triplets that admit a unique position operator. According to theo-
rem 3.1.i the class I0 decomposes as I+0 = I+0 ∪ I

−
0 ∪ I

−+
0 , where I−0 (resp., I+0 , I−+0 ) denotes

the class of irreducible triplets with σ(P0) = (−∞, 0] (resp., σ(P0) = [0,∞), σ(P0) = IR).

4.1 Zero mass irreducible triplets

In [16] the irreducible triplets of I+0 and I−0 with U irreducible, and of I−+0 with U+ irreducible
are completely identified. The results are collected by the following statement.

Theorem 4.1. Modulo unitary isomorphisms, there is only one triplet (U , ◁S, ◁T) in I+0 and
in I−0 with U irreducible, whose Hilbert space is H = L2(IR3, dν), and

(Pjψ)(p) = p jψ(p), P0ψ(p) = ±p0ψ(p), J j = J(0)j , K j = ±K
(0)
j , ◁S= Υ , ◁T=KΥ .

If (U , ◁S, ◁T) is an irreducible triplet of I−+0 with U+ irreducible, then m ∈ ZZ exists such
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that H = L2(IR3, dν)⊕ L2(IR3, dν) and

P0 =

�

p0 0
0 −p0

�

, Pj =

�

p j 0
0 p j

�

,

J j =

�

J(0)j + j j 0

0 J(0)j − j j

�

, K j =

�

K(0)j + k j 0

0 −K(0)j + k j

�

,

where j1 =
m
2

p1p0

p2
1+p2

2
, j2 =

m
2

p2p0

p2
1+p2

2
, j3 = 0, k1 = −

m
2

p2p3

p2
1+p2

2
, k2 =

m
2

p3p1

p2
1+p2

2
, k3 = 0.

With m= 0 there are six triplets, each characterized by a different pair (◁Tn, ◁Sn), n= 1,2, ..., 6.

For every m ̸= 0 in I−+0 there are two triplets with different pairs (◁Ta, ◁Sa) and (◁Tb, ◁Sb).

Remark 4.1. For the zero mass case the helicity operator λ̂= J·P
p0

plays an important role.

Theorem 4.1 and (5) imply [16] that λ̂= 0 for the triplets in I±0 .
Using theorem 4.1 we see that λ̂= −m

2 for every triplet of I−+0 with U+ irreducible.

4.2 The theories of elementary free particle with zero mass

The possible theories of elementary free particle with zero mass can now be identified by
selecting the triplets that admit a unique position operator. One conclusion shared by the
past approaches states that no position operator exists for massless particles with non-zero
helicity. Yet, the theoretical structures where such non-existence is proven [7] [9] are triplets
where ◁S is unitary and ◁T is anti-unitary. The present approach highlights that this is a serious
shortcoming, because according to theorem 3.1 these structures must be triplets in I+0 or I−0 .
But according to section 4.1 irreducible triplets with non-zero helicity can exist only in I−+0 .
Therefore, these proofs do not apply.

In fact our approach proves the following theorems [16].

Theorem 4.2. If λ̂ ̸= 0, then in every triplet of I0 there is no three-operator satisfying
(Q.1) and (4.i), (4.ii).

Theorem 4.3. For the triplet of I+0 or of I−0 , with U irreducible, there is only one three-
operator satisfying (Q.1) and (4), namely Newton-Wigner operator Q= F.

Since the search for a position operator must be restricted to triplets with λ̂ = 0, in I−+0
only triplets with m= 0 have to be checked.

Theorem 4.4. The triplets of I−+0 with a three-operator satisfying (Q.1) and (4) are three of

the six triplets with m= 0 of theorem 4.1, characterized by ◁T1 =

�

0 1
1 0

�

, ◁S1 =K
�

0 1
1 0

�

,

by ◁T2 = ◁T1,◁S2 = Υ

�

1 0
0 −1

�

and by ◁T3 =KΥ
�

0 1
1 0

�

; ◁S3 =

�

0 1
−1 0

�

K.

In all the three theories Q=

�

F 0
0 F

�

.

4.3 Conclusions for the zero mass case

The current literature in fact restricts the search for theories of massless elementary free par-
ticle to triplets with ◁T anti-unitary and ◁S unitary, i.e. to triplets of I+0 and I−0 . Our approach
proves that consistent theories can be developed also if ◁T is unitary or ◁S is anti-unitary. As a
consequence, the class of possible theories extends to include a subclass of I−+0 .
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Furthermore, the non-existence proofs of a position operator for non zero helicity massless
particles extends to the larger class of possible theories, because the operators ◁T and ◁S play
no role in the new theorem 4.2.
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