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Abstract

Following a ground-breaking proposal by Ji [1], numerical simulations of Quantum
Chromo Dynamics (QCD) on a Euclidean lattice have provided new, valuable information
on the structure of hadrons. In this talk, we briefly review the lattice approach to the
reconstruction of parton densities, highlighting the connection between lattice observ-
ables and parton densities, with a focus on theoretical issues. Since parton distributions
are extracted from lattice data by solving an inverse problem, we discuss some of the dif-
ficulties that affect these determinations and how they can be formulated in a Bayesian
framework.
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1 Introduction

A detailed understanding of the structure of hadrons, and of nucleons in particular, is central
to the current and future experimental explorations of nature at particle accelerators. Two
notable examples are the forthcoming runs of the Large Hadron Collider (LHC) at CERN and
the experimental programme at the Electron Ion Collider (EIC), which is under construction
in the US. As far as the LHC is concerned, the focus for future runs will be on increasing the
luminosity and therefore the precision of the experimental measurements. Our current under-
standing of proton collisions being based on factorization theorems, a detailed knowledge of
Parton Distribution Functions (PDFs) is necessary in order to be able to exploit the increase
in statistical precision. The EIC, on the other hand, is designed specifically to investigate the
internal structure of nucleons by probing the dynamics of quarks and gluons in head-on col-
lisions of protons (or heavier nuclei) with a beam of electrons. The interplay between theory
and experiment will ultimately provide the most accurate description of hadronic matter.

As a result, we expect in the near future significant progress in the determination of PDFs
and in our understanding of the strong force in general, leading to a description of nucleons
and possibly nuclei and atoms from first principles, i.e. from the QCD lagrangian. Lattice QCD
is by now a mature tool for accurate QCD predictions and will play an active role in this area.

In this proceedings, we start by reviewing the field-theoretical definition of parton distribu-
tions, explaining how the nucleon structure is encoded in field correlators that are defined on
the light-cone and can be computed in quantum field theories. We will then introduce a simple
toy model in order to highlight the relation between these light-cone quantities and Euclidean
correlators that are amenable to Monte Carlo simulations. We will see that the Euclidean cor-
relators, after being properly renormalized, can be treated exactly like experimental data for
which there exists a factorization theorem.

As a consequence of these factorization theorems, PDFs can only be extracted by solving an
inverse problem. In the final part of this review, we discuss some features of inverse problems
and their solution in a Bayesian framework.

2 Theoretical background

The current understanding of inelastic scattering processes that involve hadrons is based on
factorization theorems. In kinematical regimes where there is a separation of scales, factor-
ization theorems allow us to separate soft, non perturbative contributions from high-energy
partonic dynamics, up to corrections given by powers of the ratio of the scales of the problem.
The typical example of such processes is Deep Inelastic Scattering (DIS), where a lepton scat-
ters off a nucleon through the exchange of a photon with a very large transferred momentum,
as shown in Fig. 1.

The hadronic contribution to the cross section is encoded in the tensor

Hµν =
∑

X

(2π)Dδ (p− pX − q) 〈p|Jµ(0)|X 〉〈X |Jν(0)|p〉 ,

which contains the matrix element of the electromagnetic current between the nucleon in
the initial state |p〉 and a generic hadronic state |X 〉 in the final state. Using covariance un-
der Lorentz transformations, the non perturbative dynamics due to the strong interactions is
encoded in two form factors,

Hµν = F1(x ,Q2)
�qµqν

q2
− gµν

�

+ F2(x ,Q2)
�

p+
1

2x
q
�

µ

�

p+
1

2x
q
�

ν
.
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Figure 1: DIS process, where a lepton with momentum k scatters of a nucleon with
momentum p. In the deep inelastic regime, the four- momentum squared Q2 = −q2

is much larger than the typical hadronic scale Λ2.

Figure 2: Leading contribution to the hadronic tensor in the deep inelastic limit.
Hard momenta flow in the lower part of the diagram, which yields the perturbative
coefficient function Ci , while the upper part contains all the soft lines. The leading
contribution is characterized by having only two fermionic lines connecting the upper
and the lower part of the diagram. Diagrams with more lines between these two
subdiagrams are suppressed by powers of Q2. Diagram from Ref. [2].

In the deep inelastic regime, the norm of the transferred four-momentum is large compared
to the typical hadronic scale, Λ2/Q2≪ 1, and the form factors can be factorized as

Fi(x ,Q2) =

∫ 1

x

dξ
ξ

Ci(ξ,Q2,µ2) fR(x/ξ,µ2) +O(Λ2/Q2) , (1)

where the coefficient function Ci is related to a partonic cross section that can be computed in
perturbation theory, while the effect of the strong interactions in the nucleon is encoded in the
PDF fR. The suffix R in this expression indicates that the PDFs are physical, finite quantities,
defined in a particular renormalization scheme. Corrections to the factorized expression are
suppressed by powers of Λ2/Q2. The core of the argument that underlies factorization is the
fact that the hadronic matrix elements are dominated by diagrams as the one shown in Fig. 2.
See e.g. Ref. [2] for a concise discussion in the context of a scalar field theory.

Looking at the structure of the diagram, it is clear that the non perturbative contribution to
the hadronic tensor is given by the matrix element of a fermion bilinear (corresponding to the
two fermion lines that connect the two halves of the diagram) between nucleon states. When
all the details are worked out, the PDF is obtained as the integral of the matrix element of the
fermion bilinear along the light-cone direction z−,

f (x) =

∫

dz−

2π
ei(x p+)z− 〈p|ψ̄(−z−/2) ΓλAUψ(z−/2)|p〉 , (2)

where Γ determines the spin structure of the bilinear, while λA is a matrix in flavor space and
U is a Wilson line from −z−/2 to z−/2 which guarantees gauge invariance. The expression
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in Eq. (2) yields the bare PDF. It is UV-divergent and needs to be renormalized in the desired
scheme in order to match the function fR(x) that appears in the factorization formula, Eq. (1).

Similar arguments apply for less inclusive quantities, which lead to the introduction of
Wigner functions, the basis for the definition of Generalized Parton Distribution Functions
(GPDFs) and Transverse Momentum Dependent Parton Distribution Functions (TMDs),

W (x , k⊥, b⊥) =

∫

d2∆⊥
(2π)2

e−i∆⊥·b⊥ 1
2

∫

dz−d2z⊥
(2π)3

ei[(x p+)z−−k⊥·z⊥]

×
­

p+
∆⊥
2

�

�

�

�

ψ̄(−z/2) ΓλAUψ(z/2)
�

�

�

�

p−
∆⊥
2

·

.

We see explicitly from this equation that Wigner functions are defined as off-diagonal elements
of field bilinears, with the possibility of injecting a transverse momentum k⊥.

3 Lattice QCD and PDFs: A toy model

At first sight, it is difficult to imagine that lattice QCD, defined in Euclidean space, can pro-
vide information on the PDFs, since the latter are extracted from correlators evaluated along
the light-cone. Indeed, for several decades, the only quantities that were amenable to Monte
Carlo simulations were the moments of the PDFs, which are defined from the OPE as matrix
elements of local operators, see e.g. Ref. [3, 4]. The seminal work in Ref. [1] introduced
Euclidean matrix elements, where the fields in the fermion bilinear are separated in a purely
spatial direction. These matrix elements allow the extraction of the PDFs using a factorization
formula. In this respect, they are on the same footing as physical observables, and indeed they
can be incorporated in phenomenological fits, as discussed in Refs. [5,6]. It is pedagogical to
study these Euclidean correlators in a simple scalar field theory, along the lines of the work
originally presented in Ref. [2]. In this simple framework, the conceptual steps can be under-
stood without being distracted by complex calculations. Hence, we are going to consider the
matrix elements

M= 〈p|φ(z)φ(0)|p〉 , (3)

in a scalar φ3 field theory in D dimensions,

S[φ] =

∫

dD x
�

1
2
∂µφ(x)∂

µφ −
1
2

m2φ(x)2 −
λ

3!
φ(x)3
�

. (4)

In order to establish the necessary factorization theorem, we need to:

1. Renormalize the bilinear for z along the light-cone and for a Euclidean separation.

2. Find a relation between these two renormalized quantities, in the form of a factorization
theorem, with IR-finite coefficient functions.

The results summarised here were originally discussed in Ref. [7].

3.1 Renormalization

In order to address the renormalization of the bilinears, we are going to consider their ma-
trix elements between partonic states (i.e. elementary fields φ), which we denote M̂(ν, z2).
Lorentz invariance implies that the matrix element can only depend on the scalar quantities
ν = p · z and z2. We use dimensional regularization and MS for renormalization. The tree
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Figure 3: Tree level and one-loop diagrams needed for the renormalization of the
field bilinear φ(z)φ(0).

level and one-loop diagrams that are needed to renormalize the field bilinear are summarised
in Fig. 3.

At tree-level, as shown in diagram (a), the matrix element only depends on ν,

ÓMa(ν, z2) = exp[−ip · z] = exp[−iν] = ÓM(0)(ν, 0) .

Note that there is no difference between the light-cone and the Euclidean expression at tree
level. In both cases the result only depends on the variable ν.

For a light-cone separation, z2 = 0, the bilinear at one-loop is logarithmically divergent.
The renormalized matrix element is

ÓMR

�

ν;µ2
�

=

�

1+
α

6

�

log
m2

µ2
+ b

��

ÓM(0) (ν, 0)

+α

∫ 1

0

d x (1− x) log
µ2

m2 (1− x + x2)
ÓM(0) (xν, 0) , (5)

where the one-loop corrections are proportional to the coupling α = λ2/(64π3). The mul-
tiplicative renormalization in the first line is the usual renormalization of the field, which
appears in diagram (b). The convolution in the second line comes from diagram (c) in Fig. 3
and is the typical divergence that appears when such bilinears are concerned. Note that we
have suppressed the dependence on z2 since in the light-cone case we always have z2 = 0.
The renormalized light-cone matrix element is the quantity that is directly related to the PDF.

For a Euclidean separation, z2 = −z2
3 , the finite value of z2 acts as a regulator and the

one-loop calculation is finite after the usual renormalization of the field φ,

ÓMR

�

ν, z2
3 ;µ2
�

=

�

1+
α

6

�

log
m2

µ2
+ b

��

ÓM(0) (ν, 0)

+α

∫ 1

0

d x (1− x) 2K0 (mz3)ÓM(0) (xν, 0) , (6)

where K0 is a Bessel function, which is singular only at the origin z3 = 0.

3.2 Factorization

In order to obtain a factorization theorem, we expand the expression for the Euclidean corre-
lator for mz3≪ 1,

2K0 (Mz3) = − log
�

m2z2
3

�

+ 2 log
�

2e−γE
�

+O
�

m2z2
3

�

.
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We see explicitly that the function in the convolution is IR-divergent when m→ 0. However,
this divergence matches exactly the divergence in the convolution for the light-cone quantity.
When relating the two renormalized expressions, the dependence on m2 cancels and we obtain
a relation that is IR-finite, as required in a factorization theorem. By inverting the relation
between the light-cone renormalized correlator and the renormalized PDF fr , we can write

ÓMR

�

ν,−z2
3 ; µ2
�

=

∫ 1

−1

dξ C̃
�

ξν,µ2z2
3

�

f̂R
�

ξ,µ2
�

+O(m2z2
3) , (7)

C̃
�

ξν,µ2z2
3

�

= eiξν −α
∫ 1

0

d x (1− x) log

�

µ2z2
3

e2γE

4

�

ei xξν . (8)

The left-hand side of this equation is a Euclidean correlator, which can be computed using
standard techniques in Monte Carlo simulations of QCD. The right-hand side is a convolution
that involves the PDF as defined from the light-cone correlator. It is interesting to notice that
the dependence on z2 only appears at O(α). This is the equivalent of the well-known violations
of Bjorken scaling in DIS. Note also that the factorization formula receives corrections that are
powers of mz3, i.e. factorization works at small distances, with power suppressed corrections,
just like in DIS, with small distances replacing large momentum transfer.

There are a multitude of lattice observables that have been defined starting from the Eu-
clidean correlator in position space discussed here, see e.g. Ref. [8, 9] for recent reviews and
exhaustive references. All of these lattice observables are related to light-cone correlators and
therefore to PDFs following the steps outlined above. First the lattice quantities need to be
properly renormalized and then the renormalized observable – extrapolated to the continuum
limit – is matched to PDFs via some factorization theorem. After this procedure has been com-
pleted the lattice observables are exactly on the same footing as experimental observables, e.g.
like the structure functions Fi introduced above in the context of DIS [7,10].

4 Bayesian inverse problems

Determining the PDF from a finite set of lattice data using Eq. (7) is a typical example of an
inverse problem. Lattice simulations can provide a finite number of input points, which are
used to constrain a function, i.e. an element of an infinite-dimensional space. Such problem
is clearly ill-defined and the solution does depend on a number of assumptions that need to
be made. The formulation of the problem is summarised as a sketch in the diagram in Fig. 4.
We aim to determine a function f , in this particular case a function of one real variable x . The
model space, denoted M in the figure, is an infinite-dimensional space. The data set A is a
dicrete set, each point in the data set is some functional of the function f , z = G( f ). Clearly
the system is underdetermined, since it would require an infinite amount of data in order to
uniquely determine the function f . A more constructive way to phrase the problem can be
formulated in a Bayesian framework [11]. Our knowledge, or prejudice, about the function f
is encoded in some prior p( f ), which is then updated using the dataset:

p( f |A)∝ p(A| f )p( f ) , (9)

where on the right-hand side we have introduced the likelihood function p(A| f ). In principle
one could try to work in infinite-dimensional spaces and define a probability measure. While
this is a possibility, it is easier to reduce the problem by parametrizing the function f and
work with a probability density in the finite-dimensional space of the parameters that define
the model. Clearly the choice of the parametrization induces a bias that needs to be taken into
account.
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Z = RN

A

FG−1A

M(X ,Y)

data space model space

z = G( f )

z
f

Figure 4: Schematic representation of an inverse problem. On the left of the figure
we see the space of data, with some dataset A. On the right we have the space
of measurable functions M(X ,Y) and the subset F that we explore with a given
parametrization.

4.1 NNPDF fits of lattice data

As explained in the previous section, lattice data are on the same footing as experimental input
into PDFs fits. In a series of papers, some of the lattice data have been incorporated in the
general fitting framework developed by the NNPDF collaboration [5, 6]. It is worthwhile to
emphasise that the lattice data are handled like any other dataset in NNPDF, with no need to
adjust the methodology. The only input needed is a robust estimate of the statistical covariance
and the systematic errors. This is modeled by considering the data, z, as stochastic variables
distributed according to a multi-dimensional Gaussian distribution, centred at the value of the
experimental measurement Z , with a covariance C , which we denote as

z ∼N (Z , C) . (10)

Parametrization. In the NNPDF formalism, the parametrization of the function f is provided
by neural networks, see Ref. [12] for the details of the latest implementation. A sufficiently
large architecture provides a parametrization that is flexible enough to minize the functional
bias. We denote the neural net parametrization as g[θ], where θ is the set of parameters
(biases and weights of the neural network).

Posterior distribution. The posterior distribution in the space of functions – i.e. in the space
of functions that are parametrized by the neural networks – is described by a Monte Carlo set
of replicas. The replicas implement a bootstrap propagation of the statistical fluctuations of
data into the space of functions [13]. Each replica z(k) is obtained by generating a set of
pseudo-data,

z(k) = Z + ϵ(k), k = 1, . . . Nrep , (11)

where ϵ(k) are distributed according to N (0, C).
The set of replicas yields an ensemble of pseudo-data that reproduces the statistical dis-

tribution of the experimental data as encoded in the covariance matrix. For each replica, we
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Figure 5: PDFs extracted from lattice data using the NNPDF methodology. Results
from Ref. [5]. The NNPDF fit to experimental data is shown in blue for comparison.

Figure 6: PDFs extracted from lattice data using the NNPDF methodology. Results
from Ref. [7]. The NNPDF fit to experimental data is shown in green in this plot.

perform a fit, i.e. we minimize a loss function, subject to constraints1

χ2(k)[θ] =
1

Ndat

∑

i j

�

g[θ](k) − z(k)
�

i C−1
i j

�

g[θ](k) − z(k)
�

j + priors, (12)

θ (k) = argmin
θ
χ2(k)[θ] . (13)

Hence for each replica, we obtain a parametrization of the PDFs. This set of fitted parameters,
�

θ (k); k = 1, . . . , Nrep

	

, yields the desired posterior distribution in the space of functions. Note
that this ensemble of replicas is an example of importance sampling of the posterior distribu-
tion in the space of functions parametrized by the neural networks.

Results of the fits to lattice data were presented in Refs. [5,7]. A few examples are reported
in Fig. 5 and 6. It is important to remark that the lattice error in these analysis is dominated
by systematic errors.

Despite the large errors, it is remarkable that a fairly small number of lattice data points
provides a powerful constraint for the PDFs. It is clear that improved lattice simulations,
with better control of systematic errors, could target the kinematical regions were the current
uncertainties are large and have a significant impact.

1The details of the training procedure are very important, but beyond the scope of these proceedings. We advise
the interested reader to scrutinise the algorithm with great care, and refer them to the detailed explanations in
Ref. [12].
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Figure 7: Unpolarized gluon PDF from Ref. [14]. Lattice results are compared with
the results of fitting experimental data.

5 Recent fits

Since the analyses in Refs. [5,7], a large number of new simulations have appeared that have
measured a broader variety of observables, and have improved both the statistical and system-
atic errors. These more recent simulations have also focused on helicity distributions, TMDs
and GDPs, which are less precisely determined from fits to experimental data. These are areas
where the lattice simulations are most likely to have a lasting impact. We do not have time
to make an exhaustive review of contemporary results, for which we refer the reader to the
recent proceedings of the Lattice conference [9]. In order to entice the audience, we report
here a few results from recent publications. This is not an exhaustive list of result, but does
give an idea of the potential for lattice QCD.

Unpolarised gluon. The HadStruc collaboration has performed a careful study of the unpo-
larised gluon distribution [14]. The study is interesting in many respects. In particular, the
study takes into account the mixing of the gluon and the singlet bilinears under renormaliza-
tion and introduces a new parametrization of the PDFs for their fits. The result is reported
here in Fig. 7. Note that the pion mass in this work is still relatively large, mπ ≃ 358 MeV.

Another unpolarized gluon. An independent determination of the unpolarised gluon distri-
bution is presented in Ref. [15]. Despite the fact that a wider range of pion masses is explored,
there are still systematic discrepancies between these determinations and the fits to experimen-
tal data, which deserve to be clarified. It would be interesting to perform a combined analysis
of these results using the NNPDF methodology as explained in the previous Section. These
determinations are the benchmarks that the lattice results need to satisfy in order to show that
systematic errors are under control. Results are shown in Fig. 8.

Helicity and transversity. Ref. [16] is one example of a study that goes beyond the unpo-
larized distributions and addresses the determination of helicity and transversity parton dis-
tributions. These distributions are less constrained by experimental data, so that the impact
of lattice simulations here is likely to be highly significant. Results are reported in Fig. 9.
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Figure 8: Unpolarized gluon PDF from Ref. [15]. Lattice results are compared with
the results of fitting experimental data.

Figure 9: Helicity and transversity distributions from Ref. [16]. Lattice results are
compared with the results of fitting experimental data.

6 Conclusion

Since the original work in Ref. [1], there has been a momentous activity in the lattice com-
munity in order to extract PDFs from numerical simulations of lattice QCD. Following a series
of well-founded criticisms in Refs. [17, 18] the theoretical status of these studies has been
carefully examined, and it is now clear that lattice data in Euclidean spacetime can be related
to light-cone PDFs by factorization theorems after the lattice observables have been properly
renormalized and extrapolated to the continuum limit.

In this respect, lattice data can be treated exactly like any other experimental data. The
extraction of the PDFs requires the solution of an ill-defined inverse problem, whose result
depends on the choice of priors. This is a delicate point, which needs to be analysed with
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great care. A Bayesian formulation facilitates the explicit formulation of the assumptions un-
derlying the prior disribution. Having clarified the prior, the posterior distribution is given by
Bayes theorem, and can be sampled e.g. by Monte Carlo methods as suggested in the NNPDF
approach.

As the high-energy physics community is driven towards precision analyses at hadronic
colliders, a faithful determination of the errors on the Parton Distribution Functions becomes
increasingly important. We expect to see significant progress in this area, especially from the
synergy of different approaches.
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