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Abstract

This note presents an overview of current and potential future applications of machine-
learning-based techniques in the study of the top quark. The research community has
developed a diverse set of ideas and tools, including algorithms for the efficient recon-
struction of recorded collision events and innovative methods for statistical inference.
Recent applications of some techniques by the ATLAS and CMS collaborations are also
highlighted.
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1 Introduction

In recent years, machine learning (ML) and artificial intelligence have revolutionized numer-
ous fields. In top quark research, ML has already been a driving force for over a decade. Given
the top quark’s nearly exclusive decay to a b quark and a W boson, the continuous advance-
ments in b jet identification through increasingly sophisticated ML algorithms is a prime exam-
ple [1,2]. Stretching from the discovery of single top quark production at the Tevatron [3,4]
to the recent observation of four-top-quark events by the ATLAS [5,6] and CMS [7,8] collab-
orations at the CERN LHC highlight the critical role of ML in achieving such milestones in the
field.

This note reviews a collection of state-of-the-art ML algorithms addressing various aspects
of top quark research, including top quark and event reconstruction, analysis strategies, and
novel methods for statistical inference, which could offer valuable contributions to the field
in the future. An outlook on the impact of ML on future research at the upcoming HL-LHC is
also provided.

2 Top quark reconstruction

The reconstruction of top quark events typically involves two stages. First, the inference of
the direction(s) of undetected neutrino(s) from leptonically decaying top quarks, t→ bℓν, if
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(a) (b)

Figure 1: Inference of the pseudorapidity of the neutrino originating from the lep-
tonically decaying top quark in semileptonic t̄t events: (a) ν-FLOW approach [9];
(b) SPANET approach [11].

present. Second, the association of the remaining decay products (leptons and jets) to each
top quark in the event. Various ML algorithms have been developed to address both tasks.

The ν-FLOW approach [9,10] utilizes a normalizing flow neural network (NN) conditioned
on reconstructed event observables. This network maps the true neutrino direction vector,
derived from the event generator truth, to a three-dimensional normal distribution. By sam-
pling from this distribution, the likelihood of possible neutrino directions can be inferred from
data, as illustrated in Fig. 1a for a representative event, illustrating superior performance over
regressing the values via a feed-forward NN or employing a W boson mass constraint.

An efficient solution for assigning all top decay products to reconstructed particles is pro-
vided by the SPANET approach [11]. This method employs an NN transformer architecture
with over 10M parameters. The latest version of SPANET also incorporates auxiliary targets,
such as the regression of the neutrino direction (as shown in Fig. 1b) and the discrimination
of signal from background events.

A novel approach to associate the decay products to reconstructed particles is given by
the HYPER method [12]. In this framework, the top quark decay products are represented as
hypergraphs—a generalization of graph NNs, where each edge can connect more than two
nodes. Despite using only 345k parameters, the NN achieves a performance comparable to
SPANET.

3 Analysis strategy

A crucial component of many physics analyses is determining the rate of background events.
This is particularly challenging for analyses focusing on multijet events, a common feature of
top quark analyses, which have to deal with a non-negligible fraction of events arising from
pure QCD interactions. The precise yield and distribution of these interactions are difficult to
predict accurately through simulation.

One solution is the so-called ABCD matrix method, where the background fraction is ex-
trapolated using data from orthogonal regions defined by two independent observables. The
DISCO method [13] introduces an NN classifier to construct suitable observables that are uncor-
related and simultaneously separate the signal from background processes. This is achieved
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by introducing an additional penalty term during the training to suppress distance correla-
tions either between the scores of two NN classifiers or between one score and an auxiliary
observable.

Another approach was showcased in a recent analysis by the CMS collaboration searching
for all-hadronic four-top-quark events [14]. An auto-regressive normalizing flow was em-
ployed to transform data events from a background-enriched region into the signal region.

4 Statistical inference

In addition to improving event reconstruction and analysis strategies, new ML-based tools
have been studied to enhance the statistical inference, going beyond the traditional (binned)-
likelihood approach.

Likelihood-free inference, also known as simulation-based inference, focuses on using the
output score s of a classifier as a test statistic directly. This approach exploits the fact that s
can provide a likelihood ratio H1/H0 = s/(1− s), which is essential for hypothesis testing, ie.
rejecting the null hypothesis H0 in favour of an alternative hypothesis H1. Examples of tools
employing this method include INFERNO [15] and SALLY [16], both of which can account for
sources of systematic uncertainties as well.

Another domain where ML proves valuable is unfolding of differential cross sections, en-
abling direct comparisons with theoretical predictions or results from other experiments. How-
ever, it is crucial to note that no ML algorithm can overcome the inherent ill-posed nature of
the unfolding problem (i.e., inverting a Fredholm integral equation), necessitating some form
of regularization. The OMNIFOLD approach [17] facilitates unbinned and multidimensional
unfolding through an iterative procedure in which differences between simulation and data
are learned via a classifier and subsequently reweighted to match the distributions in the sim-
ulated signal sample to data. The number of iterations controls the degree of regularization.

This method has been successfully demonstrated by the ATLAS and CMS collaborations
for unfolding Drell-Yan [18] and minimum bias events [19], respectively. Selected results are
shown in Fig. 2. Notably, the unbinned nature of OMNIFOLD enables the unfolding of novel
quantities, such as taking the average of the jet mass as a function of another observable.

(a) (b)

Figure 2: Examples of unbinned, multidimensional unfolding with OMNIFOLD [17]:
(a) average jet mass as a function of the jet pT in Drell-Yan events [18] by ATLAS;
(b) number of charged jet constituents in minimum bias events [19] by CMS.
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5 HL LHC outlook

The upcoming high-luminosity (HL) phase of the LHC will significantly increase computing
demands for analyzing the much larger datasets. An actively researched area is the use of ML
to reduce the reliance on simulated samples or enhance the speed of detector simulations.

The CMS collaboration has recently addressed the former challenge by introducing the
DCTR method [20,21] for reweighting simulated samples. The study comprised the reweight-
ing of samples to emulate parameter shifts used for estimating the impact by systematic un-
certainties. An example variation is shown in Fig. 3a involving the hdamp parameter of the
POWHEG event generator [22], which regulates the energy of additional radiations. Its effect
on the sample cannot be described analytically but is approximated by the NN. The good agree-
ment observed after reweighting demonstrates that this technique could replace the need for
generating dedicated samples in the future, resulting in improved sustainability by skipping
the computational needs of classical detector simulations.

Another application of the DCTR method is reweighting samples to achieve higher-order
accuracy. In Fig. 3b, an NLO sample has been successfully reweighted to match an NNLO
prediction.

6 Conclusion

For over a decade, ML has been a driving force in top quark research. Novel ML-based ap-
proaches in top quark reconstruction, background estimation techniques, and innovative tools
for statistical inference are also setting the stage for the upcoming high-precision era of the
HL LHC.

(a) (b)

Figure 3: Reweighting of simulated events using the DCTR method [20] by CMS:
(a) reweight to emulate a variation of the hdamp parameter of the POWHEG event
generator; (b) reweight to emulate NNLO accuracy from an NLO sample. Figures
are taken from Ref. [21].
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