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Abstract

This contribution presents recent cross section measurements for top quark pair pro-
duction (tt) and single top quark production in association with a W boson (tW)
in proton-proton collisions with the CMS experiment at LHC. For tt production,
data from 2017 at a center-of-mass (CM) energy of 5.02 TeV with an integrated
luminosity of 302 pb~—! were analyzed, with a measured inclusive cross section of
62.3 = 1.5(stat) = 2.4(syst) £ 1.2(lumi) pb, consistent with Standard Model (SM) pre-
dictions. The tW measurement was performed using data from 2022 with an inte-
grated luminosity of 34.7 fb~! at a CM energy of 13.6 TeV, yielding a cross section of
82.3+ 2.1(stat)ig‘3(syst) + 3.3(lumi) pb, in agreement with SM predictions. It includes
also differential cross sections which are in good agreement with next-to-leading order
in perturbative quantum chromodynamics.
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1 Introduction

The top quark is the heaviest known fundamental particle and plays a critical role in particle
physics. Its unique properties, such as its mass or its short lifetime, make it an ideal subject
for studying fundamental aspects of the Standard Model (SM). More precisely, the top quark
pair (tt) production is of crucial importance for precision tests of SM predictions and serves
as a window to beyond-the-SM (BSM) physics that could modify its cross section. On the
side of the production of a single top quark in association with an on-shell W boson (tW), it
is sensitive to the V,; parameter of the Cabbibo-Kobayashi-Maskawa matrix and also to BSM
physics [1]. Moreover, it is interesting for its interference with tt production [2] and due to its
role as important background in other analyses.

This summary covers two recent analyses by the CMS collaboration [3, 4]: first, tt pro-
duction at a center-of-mass (CM) energy of 5.02 TeV and integrated luminosity of 302 pb™!,
which is the most precise CMS cross section measurement of the process at that CM energy,
in a clean scenario of low pileup conditions and low energy spectrum. Also, tW production
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Figure 1: Distributions for the electron+jets (left plot) and muon+jets (right plot)
final states used for the ML fit: MVA score bins for the 3j1b category and AR,.q(j,j’)
bins for the other categories. Post-fit data (points), predictions (filled histograms)
and their ratio are shown.

at a CM energy of 13.6 TeV, utilizing an integrated luminosity of 34.7 fb™! from the 2022
LHC run is covered. This constituted the first single-top quark LHC result from Run 3 and
includes both inclusive and differential cross section measurements, whereas the tt analysis
includes just the inclusive measurement. This contribution is based on the publicly available
CMS analyses [5,6].!

2 Analysis of tt production cross section at 5.02 TeV

2.1 Experimental setup and strategy

This analysis uses data collected at 5.02 TeV with an integrated luminosity of 302 pb~!. Fur-
ther details on the dataset and Monte Carlo (MC) samples used can be found in [5]. This run
benefits from a low pileup environment, a feature that allows for a focused investigation of tt
production without significant contamination from other collisions. Apart from the tt signal,
other processes which are considered as background are modeled using MC samples (single
top t channel, single top tW, a W boson in association with additional jets, known as W+jets
and Drell-Yan, known as DY). Also quantum chromodynamics (QCD) multijet events are in-
corporated into the analysis via a data-driven estimation. In this analysis, single lepton triggers
are used, thus retaining events in which the trigger detects at least one electron (muon) with
pr > 20 (17) GeV.

In order to enhance purity, a further selection that requires events to contain exactly one
lepton (either electron or muon) with pr > 20 GeV, |n| < 2.4, vetoing any second lepton of
opposite flavor with p as low as 10 GeV, and at least three jets is applied. The jets are required
to have pp > 25 GeV and |n| < 2.4, and the events are further categorized into eight categories
according to the number of jets and b-tagged jets and to lepton flavor. In such a way, categories
are defined for events with 3 and > 4 jets, further divided into events with 1 or > 2 b-tagged
jets, and denoted as 3j1b, 4j1b, 3j2b and 4j2b. Finally, events are required to have a missing
transverse energy greater than 30 GeV,

IThe tt analysis’ results are shown as presented in the conference, but have since been superseded by the results
in the submitted paper [7].
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Figure 2: Summary of the most recent tt cross section measurements from the CMS
and ATLAS [10] Collaborations, as well as theoretical predictions, for a CM energy
of 5.02 TeV.

In such a scenario, 4j1b, 3j2b and 4j2b categories are very pure in signal, while 3j1b has a
noticeable contribution from W+jets background (and minor from other backgrounds). There-
fore, in those regions a multivariate analysis (MVA) classifier (random forest) is trained to
separate the tt signal from the W+jets background.

For the purpose of extracting the cross section, a maximum likelihood (ML) fit is performed
over the 8 categories of the analysis, where the systematic uncertainties are included into the
fit as nuisance parameters. In the 3j2b, 4j1b and 4j2b categories, the AR,,.4(j,j’) distribution
is used, given its discriminative power whereas in the 3j1b ones, the MVA output discriminator
is the fitted variable. Those distributions (post-fit) can be seen in Figure 1.

2.2 Results

The measured inclusive cross section after the ML fit is a(tf):62.5:|:1.6(stat)i§:§(syst):l:1.2(lumi)
pb. This result is combined with prior measurements in the dilepton channel [8], resulting the
combination o(tt) = 62.3 £ 1.5(stat) + 2.4(syst) + 1.2(lumi) pb. In both measurements, the
dominant uncertainties are the ones associated with the integrated luminosity and with the
b tagging scale factors for heavy flavors. Moreover, the obtained values are consistent with
the SM prediction of 69.5t§:; pb at next-to-next-to-leading order (NNLO) in perturbative QCD
(pQCD) [9]. A summary of the measurements presented here, together with previous CMS
and ATLAS measurements and different theoretical predictions is shown in Figure 2.
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Figure 3: Distributions used for the ML fit: MVA discriminant for 1j1b (left) and
2j1b (center) categories, and subleading jet p for 2j2b (right) category. Post-fit data
(points), predictions (filled histograms) and their ratio are shown.

3 Analysis of tW production cross section at 13.6 TeV

3.1 Experimental setup and strategy

This analysis uses data taken in 2022, corresponding to an integrated luminosity of 34.7 fb™?,
at a CM energy of 13.6 TeV. Data are selected using a combination of dilepton and single lepton
triggers, requiring the events in the first case to have an electron (muon) with pr > 12 GeV
(pr > 8 GeV) and a muon (electron) with pp > 23 GeV (pp > 23 GeV); and in the second,
to have an electron (muon) with pr > 32 (24) GeV. MC simulated samples are used to model
both the signal and background contributions. The tW signal sample uses the diagram removal
(DR) [11] scheme to avoid double counting of Feynman diagrams in tW and tt processes.
Background contributions considered in this analysis are tt, DY, diboson processes (including
WW, WZ, ZZ events and denoted as VV), vector boson production in association with a tt pair
(denoted as ttV) and W or tt samples with one lepton and jets in the final state, denoted as
non-W/Z. Further details on these samples can be seen in the public paper [6].
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With the purpose of enhancing the signal over background contribution, events are further
selected if they contain at least a pair of opposite flavor and electric charge leptons (denoted as
e*uT), having the leading one py > 25 GeV, In any case, all the leptons must fulfill pp > 20 GeV
and |n| < 2.4. On top of that, events are only selected if the minimum invariant mass of all
the pairs of leptons in the event is greater than 20 GeV. Events are further classified according
to the exact number of jets (n) and b-tagged jets (m) in the events, satisfying all of them
pr > 30 GeV and |n]| < 2.4, and denoting each category as njmb.

After the selection described above, 3 categories are of interest for the measurements: 1j1b
(purest in signal), 2j1b and 2j2b. The three of them are used for the inclusive cross section
measurement, while only 1j1b is used for the differential measurements. For the inclusive
result, a similar strategy to the one described in Sec. 2.1 is followed: a ML fit to several
distributions in the three mentioned categories, including the different sources of uncertainty
as nuisance parameters. For the differential results, unfolding from detector to particle level
is done via the TUNFOLD [12] technique, with a veto on events with low energy jets.

Given the challenge of separating signal from background, two independently trained MVA
classifiers based on random forests are trained in the 1j1b, 2j1b categories and their discrim-
inant distributions are used in the ML fit. In both trainings, tW is treated as signal, tt as
background and additionally, in the 1j1b (2j1b) category, DY (Non-W/Z) as an extra back-
ground. For the 2j2b category, the subleading jet pr is used as input distribution into the ML
fit. The three (post-fit) distributions are shown in Figure 3. In Figure 4, the differential results,
normalized to the fiducial cross section and bin width are shown for the 6 studied variables.

3.2 Results

The inclusive cross section after the ML fit was measured to be
o(tWw) = 823+ 2.1(stat)tg:3(syst) + 3.3(lumi) pb. The leading uncertainties are those re-
lated with the energy of the jets, the top quark pr modeling and the b tagging efficiencies.
This value aligns with SM prediction of 87.9 + 3.1 pb at approximate next-to-next-to-next-to-
leading order (NNNLO) in pQCD [13].

The differential cross sections were extracted for various variables and using different sim-
ulation procedures, both for the matrix element (POWHEG, MADGRAPH5 aMC@NLO, with
both DR and diagram substraction schemes [11]) and the parton showering (PYTHIAS, HER-
WIG7) calculations. In all the variations, good agreement between data and different predic-
tions was seen.

4 Conclusion

In this contribution, two recent top-associated cross section measurements performed by the
CMS collaboration are summarized. More precisely, the inclusive tt cross section measurement
at a CM energy of 5.02 TeV and an integrated luminosity of 302 pb~! and the inclusive and
differential tW cross section measurements at 13.6 TeV and integrated luminosity of 34.7 fb™,
in both cases using proton-proton collisions. All the measurements described are consistent
with the SM predictions, being the former the most precise tt cross section measurement per-
formed by the CMS experiment at that CM energy, and the latter the first LHC single-top result
using Run 3 data.
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