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Abstract

To meet the precision targets of upcoming LHC runs in the simulation of top pair produc-
tion events it is essential to also consider off-shell effects. Due to their great computa-
tional cost I propose to encode them in neural networks. For that I use a combination of
neural networks that take events with approximate off-shell effects and transform them
into events that match those obtained with full off-shell calculations. This was shown
to work reliably and efficiently at leading order. Here I discuss first steps extending this
method to include higher order effects.
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1 Introduction

To contrast experimental measurements at the Large Hadron Collider (LHC) with theoretical
predictions precise theoretical simulations are essential. Simulating the production and the de-
cay of heavy particles and restricting their kinematics to mass shell, even approximately, can
however introduce bias. As the simulation of processes with full off-shell kinematics is com-
putationally very costly I propose the use of neural network surrogates to encode the off-shell
effects. This approach, applied to top pair production with dileptonic decay at leading order
(LO) in QCD in Ref. [1], uses a Bayesian direct diffusion network to map the events simulated
with approximate off-shell kinematics to those obtained with full off-shell calculations. This
method, that transforms the event kinematics, is chosen over the alternative in which events
are generated to ensure that the neural network has to learn the least adjustment possible.
Additionally, a classifier neural network is used to reweight the transformed events to further
align them with the target sample. In this follow-up work I demonstrate the viability of this
approach at next-to-leading order (NLO) in QCD. For more details I refer to the original study.

It must be mentioned at this point that our consideration of the NLO in the proceedings
is only the first step. In particular I only concern myself with real radiation in the production
process. This guarantees that the samples I transform into each other have the same number
of particles in the final state, which is crucial for our neural network setup.
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2 Data

In the original study the reference process is the top pair production with leptonic decays at
LO. Here I chose the same process as reference but this time at NLO. The event generators
HVQ [2] and ST-WTCH-DR [3] were used to generate doubly- and singly-resonant events with
approximate off-shell effects, respectively. For the sake of notational simplicity I refer to these
events as on-shell events. The generator BB4L [4, 5] was used to generate events in a fully
off-shell calculation. In the following I call these events off-shell events. All the events were
generated with the same physical parameters as shown in our original study.

The ST-WTCH-DR generator implements the tW associated production in 5 flavour-number-
scheme and is thus missing one particle as compared to the HVQ generator. To rectify this I
use PYTHIA [6] to attach just one gluon or light quark in the production process (initial- or
final-state) in shower approximation. Thus the on-shell events all have the same number of
final state particles, or dimensionality.

At NLO both input (on-shell) and target (off-shell) events now contain additional particles
as compared to LO. BB4L events contain up to two additional particles

pp→ be+νe b̄µ−νµ ,

pp→ be+νe b̄µ−νµ j ,

«

“on-shell” (1)

pp→ be+νe b̄µ−νµ ,

pp→ be+νe b̄µ−νµ j ,

pp→ be+νe b̄µ−νµ j j′ ,

pp→ be+νe b̄µ−νµ j j′ j′ .



















“off-shell” (2)

Here, the massless quarks or gluons j are attached in the production process and the gluons
j′ are attached in the decay process. A comparison between the two event distributions on
the example of the reconstructed top mass and the mass of lepton–b-jet system can be seen in
Fig. 1. In contrast to the observables in LO shown in Ref. [1], on-shell and off-shell observables
are now more alike as due to real radiation in NLO doubly-resonant on-shell events also fill
up regions that would otherwise be predominantly populated by singly-resonant events at LO.
Moreover, the addition of singly-resonant events to the on-shell sample further increases the
similarity of the observables. The full phase space however became more complex as more
dimensions were added and new process topologies were introduced.

Since I concern myself here only with real radiation in the production process, the gluons
j′ need to be removed from the off-shell events to match their dimensionality with the on-
shell events. To preserve the correct top quark kinematics I use the fact that BB4L optionally
provides the events’ Born kinematics. Lorentz-boosting the final state particles underlying
Born momenta pi,born into the inertial frame of the respective top or antitop quark according
to Eq. 3 transforms the events to a state where the gluons are not yet emitted but their summed
momenta already describe the correct top or antitop quark kinematics after a gluons emission

p′i = Λ(−vt)Λ(vt,born)pi,born , for i ∈
�

b, e+,νe

�

,

p′i = Λ(−vt̄)Λ(vt̄,born)pi,born , for i ∈
�

b̄,µ−, ν̄µ
�

.
(3)

The redistribution of the final state particle momenta after reattaching the gluons can be
done later without the need of machine learning techniques.

In Eq. 3 Λ refers to the Lorentz transformation. The velocities v are either top or antitop
quark velocities as described in the subscript, where velocities in the Born approximation are
marked as such. Further, before treating the data with neural networks, the dimensions of the
phase space are reduced by transforming the momentum components (E, px , py , pz) of each
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Figure 1: Exemplary observable distributions of the reconstructed antitop quark mass
mb̄lν̄ as well as ml b. The on-shell distribution consists of the summed up distributions
of on-shell doubly-resonant events as well as singly-resonant events. The discontinu-
ity in the mb̄lν̄ distribution seen on the left side is due to approximating the off-shell
calculations for doubly-resonant events using finite top width.

final state particle to (pT ,φ,η, m) where the mass m is constant due to the particle being on
the mass shell. It can therefore be omitted. I rotate all azimuthal angles φ so that φν̄ = 0 for
all events. As two dimensions can be omitted to satisfy

∑

i

pT,i = 0 , for i ∈
�

b, e+,νe, b̄,µ−, ν̄µ, j
�

. (4)

I reduce the initial 28 dimensions to 18 dimensions in total.

3 The Bayesian direct diffusion network

A Bayesian direct diffusion network is used to map events in the on-shell phase space to the
off-shell phase space. It iteratively learns how to predict a velocity field between the on-shell
and the off-shell distributions spanning along an additional unphysical dimension. Single
events can be transported from the on-shell distribution to their target places in the off-shell
distribution by solving the differential equation given by that velocity field. What happens
each iteration of the training process is shown in the diagram in Fig. 2 below.

This training procedure is also called conditional flow matching(CFM) [7,8]. The network
predicts a velocity vθ for a random point on the linear trajectory that connects two randomly
sampled events of each distribution. Then it tries to minimize the mean squared error between
prediction and correct v(t|x0). It can be shown that this seemingly random learning of linear
trajectories results in an average velocity field that correctly maps between both phase spaces.
The hyperparameters used in the training can be seen in Tab. 1.

Diffusion models, although not guaranteeing optimal transport, give deterministic predic-
tions, as compared to viable alternatives like Schrödinger bridge models. These also do not
scale well with dimension and are prone to accumulate errors across iterations as often several
neural networks are trained to transform data step by step over a discretized time [9].
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t ∼ U([0, 1])

x0 ∼ poff(x0), x1 ∼ pon(x1) x(t|x0) = (1− t)x0 + tx1 CFM

L =
(
vθ − (x1 − x0)

)2 vθ

Figure 2: Schematic showing what happens each iteration of training the CFM net-
work. Diagram adapted from Ref [7].

Figure 3: Exemplary results of the direct diffusion (DiDi) network.

The results of this transformation of events can be seen in the plots shown in Fig. 3.
One might think that it is advantageous to deal with singly-resonant and doubly-resonant
events separately than to let one network learn the transformation of both types of events
jointly. However, any advantage due to this separation has shown to not matter much at the
Les Houches Event (LHE) stage. Nevertheless, it could be shown that the use of singly and
doubly-resonant events as input for the network provides better results than the use of only
doubly-resonant on-shell events, which shows the importance of the quality of the input event
distribution. For the results shown here I decided to train a single network. Each training batch
of top pair events is mixed with a certain percentage of randomly sampled single top events
equal to their proportion in the events generated with BB4L. The percentages are 2.7506% for
antitops and 2.7477% for tops.

The direct diffusion network described here can be realized as a normal feedforward neu-
ral network. That means the learnable variables of the network are weights and biases repre-
sented by numbers. I decided to implement the network as a Bayesian neural network [10,11]
where biases and weights are not represented by numbers but by normal distributions with
a learnable mean and standard deviation. This enables us to sample from a wide range of
possible trained networks. Using a set of sampled networks I transform each input event into
a set of generated events. The variance in the individual variables of the resulting event kine-
matics provides information about the uncertainty of the network’s prediction, which can be
approximated as a normal distribution fit to the generated kinematics in each dimension.
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Table 1: Hyperparameters used in the direct diffusion and classifier network train-
ings.

Hyperparameter DiDi classifier

Embedding dimension 64
Layers 8 5
Intermediate dimensions 1024 512
Dropout 0.1
Normalization BatchNorm1d

LR scheduling OneCycle ReduceOnPlateau
Starter LR 10−4 1−3

Max LR 10−3

Patience 10
Epochs 1000 100
Batch size 65536 16384

c 10−4

# Training events (t t̄, t, t̄) 2.4 M, 731 K, 732 K 2 M, 610 K, 610 K

4 Classifier based reweighting

A classifier network is used to further improve the distribution of the generated event kinemat-
ics. The classifier network is trained to differentiate between both types of events, generated
events and true off-shell events, which are labeled as such. The network should output a 1
for off-shell events and a 0 for generated events. Since the network is trained to minimize
the mean squared error between prediction an correct event label, this leads to the implicit
estimation of densities of events in the phase space.

C(x) =
poff,data(x)

poff,data(x) + poff,model(x)
, (5)

w(x) =
poff,data(x)

poff,model(x)
=

C(x)
1− C(x)

. (6)

This can be seen in Eq. 5, where C(x) is the output of the classifier between 0 and 1 and
x is a arbitrary point in the phase space. It can be used to describe the weight w(x) as shown
in Eq. 6. Given events represented by points in phase space x and generated by the direct
diffusion network the classifier is then used to reweight every event which results in a gener-
ated event distribution that resembles the target off-shell distribution more closely [11]. The
hyperparameters used for the training of the classifier can be seen in Tab. 1. Its results can be
seen Fig. 4. One can see that the reweighting has a appreciable effect on the generated event
distribution and brings it closer to the desired off-shell distribution. Here, it should be men-
tioned that the reweighting step does not work properly without the first step of transforming
the data using the direct diffusion network. That is because huge parts of the phase space are
not populated in the on-shell data set and therefore cannot be reweighted. Moreover, this net-
work is not bayesianized yet as its uncertainty is considered rather negligible. A full analysis
of the method’s uncertainty however should involve the uncertainties of both networks used.
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Figure 4: Results of the direct diffusion network after additional reweighting by the
classfier network.

5 Conclusion

It was succesfully demonstrated that the transformation from on-shell to off-shell event distri-
butions can also be realised in the higher-dimensional NLO phase space compared to the LO
phase space. The combination of direct diffusion and classifier network makes it possible to
generate even complicated off-shell event distributions that match the actual off-shell distribu-
tion with a deviation of just a few percent. Over large regions of the phase space, the deviation
even falls below the one percent mark. For the complete generation of off-shell events at NLO,
it is necessary to reattach the previously removed radiation in decay mentioned in section 2. I
will deal with this topic in a future paper. In this paper I will also subject the results to more
detailed tests, e.g. comparing the showered events. I will also discuss the ways in which the
networks can be implemented. Additionally, the classifier network could also get bayesianized
to achieve a more complete analysis of the predictions’ uncertainties.
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