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Abstract

By considering symmetric- and asymmetric-dipolar coupled mixtures (with dysprosium
and erbium isotopes), we report a study on relevant anisotropic effects, related to spa-
tial separation and miscibility, due to dipole-dipole interactions (DDIs) in rotating binary
dipolar Bose-Einstein condensates. The binary mixtures are kept in strong pancake-like
traps, with repulsive two-body interactions modeled by an effective two-dimensional
(2D) coupled Gross-Pitaevskii equation. The DDI are tuned from repulsive to attractive
by varying the dipole polarization angle. A clear spatial separation is verified in the den-
sities for attractive DDIs, being angular for symmetric mixtures and radial for asymmet-
ric ones. Also relevant is the mass-imbalance sensibility observed by the vortex-patterns
in symmetric- and asymmetric-dipolar mixtures. In an extension of this study, here we
show how the rotational properties and spatial separation of these dipolar mixture are
affected by a quartic term added to the harmonic trap of one of the components.
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1 Dipolar Bose-Einstein condensate - Introduction

The experimental realization of Bose-Einstein condensation in chromium (52Cr) atoms has
opened the new research direction called dipolar quantum gases [1]. Following the condensa-
tion in 52Cr, many subsequent studies have been carried out by different experimental groups
on fermionic and bosonic properties of strongly dipolar ultracold gases, such as with dyspro-
sium (Dy) and erbium (Er) (see [2] and references therein). More recently, the elementary
excitations spectrum of 164Dy and 166Er dipolar Bose gases were analyzed in Ref. [3], by con-
sidering three-dimensional (3D) anisotropic traps across the superfluid-supersolid phase tran-
sition. The recent investigations in ultracold laboratories with two-component dipolar Bose-
Einstein Condensates (BEC), on stability and miscibility properties, became quite interesting
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due to the number of control parameters that can be explored in new experimental setups.
The parameters which can be controlled are given by the strengths of dipoles, the number of
atoms in each component, the inter- and intra-species scattering lengths, as well as confining
trap geometries. The stability and pattern formation have been studied in Ref. [4], by consid-
ering dipolar-dipolar interactions (DDIs) in two-component dipolar BEC systems. Rotational
properties of two-component dipolar BEC in concentrically coupled annular traps were also
studied in Ref. [5], by assuming a mixture with only one dipolar component.

Following previous studies with rotating binary dipolar mixtures and their miscibility prop-
erties [6–8], the miscible-immiscible transition (MIT) of the dipolar mixtures with 162,164Dy
and 168Er were also recently studied by us in Ref. [9]. For these coupled dipolar systems,
the miscible-immiscible stable conditions were analyzed within a full 3D formalism, by con-
sidering repulsive contact interactions, within pancake- and cigar-type trap configurations.
The rotational properties and vortex-lattice pattern structures of these dipolar mixtures were
further investigated by us in Refs. [10–12], by changing the inter- to intra-species scattering
lengths, as well as the polarization angles of the dipoles. Among the observed characteristics
of these strong dipolar binary systems, relevant for further investigations are the possibilities
to alter the effective time-averaged DDI from repulsive to attractive, by tuning the polariza-
tion angle ϕ of both interacting dipoles from zero to 90◦, respectively. In Ref. [11], vortex
pattern structures were studied by considering rotating binary mixtures confined by squared
optical lattices, whereas in Ref. [12], by tuning ϕ, our investigation was mainly concerned
with rotational properties together with spatial separations of the binary mixtures.

Motivated by the above mentioned studies, considering that the interplay between DDIs
and contact interactions can bring us different interesting effects in the MIT, showing richer
vortex-lattice structures in rotating binary dipolar systems, in the present contribution we are
also reporting some new results obtained for the properties of dipolar mixtures confined by a
strongly pancake-like two-dimensional (2D) rotating harmonic trap. The effect of a weak quar-
tic perturbation in the (x , y) plane, applied to the first dipolar component, is studied by tuning
the polarization angles of the dipoles together with the contact inter-species interactions.

Next section, the model formalism is presented with our parametrization and numerical
procedure. In section 3, after an analysis of the main results for symmetric and asymmetric bi-
nary dipolar mixtures confined by strong pancake-like harmonic traps, we present new results
obtained when considering the effect of a weak quartic perturbation added to the harmonic
trap of one of the components. Finally, a summary with our conclusions is given in section 4.

2 Model formalism, parametrization and numerical approach

2.1 Model formalism

The coupled dipolar system with condensed two atomic species i = 1,2, with the respective
masses mi (with m1 ≥ m2) are assumed to be confined in strongly pancake-shaped harmonic
traps, with fixed aspect ratios, such that λ = ωi,z/ωi,⊥ = 20 for both species i = 1,2, where
ωi,z and ωi,⊥ are, respectively, the longitudinal and transverse trap frequencies. The coupled
Gross-Pitaevskii (GP) equation is cast in a dimensionless format, with energy and length units
given, respectively, by ħhω1,⊥ and l⊥ ≡

Æ

ħh/(m1ω1,⊥). Correspondingly, the space and time
variables are given in units of l⊥ and 1/ω1, respectively, such that r → l⊥r and t → τ/ω1.
Within these units, and by adjusting both trap frequencies such that m2ω

2
2,⊥ = m1ω

2
1,⊥,

the dimensionless external 3D trap potential for each one of the species i can be written as
V3D,i(r) ≡ Vi(x , y) + 1

2λ
2z2. On the miscibility conditions for binary trapped dipolar systems,

more details and discussion can be found in Refs. [10–12]. Large values for λ allow us to

023.2

https://scipost.org
https://scipost.org/SciPostPhysProc.3.023


SciPost Phys. Proc. 3, 023 (2020)

reduce to 2D the original 3D formalism by considering the usual factorization of the 3D wave
function as ψi(x , y,τ)χi(z), where χi(z) ≡ (λ/π)

1/4 e−λz2/2. The two-body contact interac-
tions related to the scattering lengths ai j , and DDI parameters are defined as [12]

gi j ≡
p

2πλ
m1ai jN j

mi j l⊥
, di j =

N j

4π

µ0µiµ j

ħhω1 l3
⊥

, a(d)ii ≡
1

12π
mi

m1

µ0µ
2
i

ħhω1l2
⊥

, a(d)12 = a(d)21 =
1

12π
µ0µ1µ2

ħhω1l2
⊥

,

(1)
where i, j = 1,2, with N j being the number of atoms and mi j = mim j/(mi +m j) the reduced
mass of the species i and j. In our numerical analysis, the length unit will be assumed being
l⊥ = 1µm ≈ 1.89× 104a0, with a0 being the Bohr radius. The corresponding 2D coupled GP
equation for the two componentsψi ≡ψi(x , y,τ) of the total wave function can be written as

i
∂ψi

∂ τ
=
�−m1

2mi
∇2

2D + Vi(x , y)−ΩLz +
∑

j=1,2

gi j |ψ j |2 +
∑

j=1,2

di j

∫

d x ′d y ′V (d)(x − x ′, y − y ′)|ψ′j |
2
�

ψi , (2)

where ∇2
2D ≡

∂ 2

∂ x2 +
∂ 2

∂ y2 , ψ′i ≡ψi(x ′, y ′,τ), with V (d)(x , y) being the reduced 2D expression
for the DDI. The 2D confining potential Vi(x , y) is assumed to be harmonic for both compo-
nents, as in Ref. [12]. However, in the present contribution we are providing an extension to
our study reported in Ref. [12], by examining the effect, on the pattern distribution and spatial
separation of the dipolar mixture, of a quartic term applied to one of the components, which
we define as the more-massive one. So, the trap is given by

Vi(x , y)≡ Vi(ρ)≡
ρ2

2
+ κiρ

4, where ρ ≡
Æ

x2 + y2, κ2 = 0, (3)

with κ1 ≡ κ being a dimensionless positive parameter (in principle, assumed to be small),
which increases the trap confinement of the more massive component. Experimentally, the
quartic potential together with harmonic trap can be created by using far-detuned laser beam
propagating along the axis of the trap, perpendicular to the (x , y) plane. So, the width and
strength of the quartic trap can be controlled, respectively, by the width and amplitude of the
blue-detuned Gaussian laser beam. More details can be found in the reference [13], where
experiments with quartic trap in BEC are discussed. Each component of the wave function
is assumed normalized to one,

∫∞
−∞ d xd y|ψi|2 = 1. In Eq.(2), Lz is the angular momentum

operator (in units of ħh), with Ω being the corresponding rotation parameter (in units of ω1),
which is assumed to be common for both components.

The 2D DDI presented in the integrand of the second term shown in Eq. (2) can be ex-
pressed in the 2D momentum space as the combination of two terms, by considering the
orientations of the dipoles ϕ and the projection of the corresponding Fourier transformed
V (d)(x , y). One term is perpendicular, with the other parallel to the direction of the dipole
inclinations, as described in Refs. [7,8]. By generalizing the description to a polarization field
rotating in the (x , y) plane, the two terms can be combined according to the dipole orientations
ϕ, with the total 2D momentum-space DDI given by [12]

eV (d)(kx , ky) =
3 cos2ϕ − 1

2

�

2− 3
s

π

2λ
kρ exp

�

k2
ρ

2λ

�

erfc

�

kρ
p

2λ

�

�

≡ Vϕ(kρ), (4)

where k2
ρ ≡ k2

x + k2
y , with erfc(x) being the complementary error function of x . The 2D

configuration-space effective DDI is obtained by applying the convolution theorem in Eq. (2),
performing the inverse 2D Fourier-transform for the product of the DDI and density, such that
∫

d x ′d y ′V (d)(x − x ′, y − y ′)|ψ′j|
2 = F−1

2D

�

eV (d)(kx , ky)en j(kx , ky)
�

. From Eq. (4), one should
notice that such momentum-space Fourier transform of the dipole-dipole potential changes
the sign at some particular large momentum kρ. However, after applying the convolution
theorem with the inverse Fourier transform (by integrating the momentum variables), the
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corresponding coordinate-space interaction has a definite value, as in the 3D case, which is
positive for ϕ ≤ ϕM , and negative for 90◦ ≥ ϕ > ϕM , where ϕM ≈ 54.7◦ is the so-called
“magic angle", in which the DDI is canceled out.

2.2 Parametrization and numerical approach

The two binary mixtures (164Dy-162Dy and 168Er-164Dy) that we are investigating are called,
respectively, “symmetric" and “asymmetric" ones; where these terms are related to the dipo-
lar symmetry of the condensed atoms. The corresponding magnetic dipole moments of the
three species are the following: µ = 10µB for 162,164Dy, and µ = 7µB for 168Er. So, by consid-
ering the definitions given in (1), the strengths of the DDI are a(d)i j = 131 a0 (i, j = 1,2), for the

symmetric-dipolar mixture 164Dy-162Dy; and a(d)11 = 66 a0, a(d)22 = 131 a0 and a(d)12 = a(d)21 = 94 a0,
for the 168Er-164Dy mixture. In all the cases, we assume the number of atoms for both species
are identical and fixed at N1 = N2 = 5000. The number of atoms are reduced in relation to the
ones used in Ref. [12], in view of our present aim and numerical convenience. For symmetric-
dipolar mixture (µ1 = µ2) we have d12 = d11 = d22. In the case of contact interactions, we
should consider enough large repulsive scattering lengths in view of our stability requirements.
We fix both intra-species contact interactions at a11 = a22 = 50a0, remaining the inter-species
one to be explored by varying the ratio parameter δ ≡ a12/a11. Once selected the polariza-
tion angle and δ as the appropriate parameters to alter the miscibility properties of a mixture,
we fix other parameters guided by possible realistic settings and stability requirements. For
the present approach, we choose Ω = 0.75 for the rotation frequency parameter, larger than
the one used in Ref. [12] (Ω = 0.6), in order to improve the observation of vortex-pattern
structures and spatial separation.

For the numerical approach to solve the GP formalism (2), the split-step Crank-Nicolson
method [14,15] is applied, combined with a standard method for evaluating DDI integrals in
momentum space, as described in Ref. [12]. In the search for stable solutions, the numerical
simulations were carried out in imaginary time on a grid with a maximum of 464 points in both
x − y directions, with spatial and time steps ∆x =∆y = 0.05 and ∆t = 0.0005, respectively.
In this approach, both wave-function components are renormalized to one at each time step.

3 Symmetric- and asymmetric-dipolar mixtures - Results

3.1 Dipolar mixtures confined by identical harmonic pancake-like traps

We focus our study in the two coupled mixtures given by 168Er-164Dy and 164Dy-162Dy, moti-
vated by recent experimental studies with dipolar BEC systems. In our investigation, we have
considered harmonic strongly pancake-like trap, as detailed in Ref. [12]. First, a detailed anal-
ysis of ground state and stability properties was performed in the absence of rotation. In this
respect, we understand that our theoretical predictions can be helpful in verifying miscibility
properties in on-going experiments under different anisotropic trap configurations. The sta-
bility regime was verified for 168Er-164Dy and 164Dy-162Dy mixtures considering the fraction
number of atoms for each species as functions of the trap-aspect ratio λ. From the MIT condi-
tions for homogeneous coupled systems confined in hard-wall barriers, one can observe that
the miscibility remains unaffected by the dipolar interactions. In order to estimate the misci-
bility for non-homogeneous confined binary mixtures, a relevant parameter η was defined in
Ref. [9], by integrating the square-root of the product of the two-component densities, given by
η=

∫ p

|φ1|2|φ2|2 dx, which varies from η= 0 (complete immiscible mixtures) to η= 1 (for
complete miscible mixtures). This parameter is found appropriate for a quantitative estimate
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of the overlap between the two densities of the coupled system. By considering the natural
properties of the mixed elements, the two mixtures, we notice that 168Er-164Dy and 164Dy-
162Dy have quite different miscibility behaviors, with 164Dy-162Dy being almost completely
miscible (η= 0.99) and 168Er-164Dy partially miscible (η= 0.77), when the other parameters
(trap-aspect ratio and number of atoms) are fixed to the same values. Such behavior is clearly
due to a mass-imbalance effect, as discussed in Ref. [12], which plays a relevant role in the
inter-species dipolar strength when compared with the intra-species one.

The two binary mixtures (164Dy-162Dy and 168Er-164Dy) are considered in a rotating frame
within quasi-2D settings. Owing to the different miscibility properties, quite distinct vortex pat-
terns are observed between the symmetric and asymmetric mixtures. For the dipolar symmet-
ric mixture, 164Dy-162Dy, we observe the following lattice patterns: triangular, square-shaped,
rectangular-shaped, double core, striped, and with domain walls. For the dipolar asymmetric
mixture, 168Er-164Dy, we notice triangular, square-shaped, and circular pattern lattices. Fur-
ther, to analyze the anisotropic properties of dipolar interactions, the polarization angle ϕ of
the dipoles was modified with the dipolar interactions being tuned from repulsive to attrac-
tive. With the dipoles of the two species polarized in the same direction, perpendicular to
the direction of the dipole alignment (ϕ = 0), the DDI is repulsive. By tuning the polariza-
tion angle ϕ from zero to 90◦ the DDI changes from repulsive to fully attractive, with the
DDI being canceled for ϕ = ϕM ≈ 54.7◦. The miscibility of the condensed mixture is mainly
affected by the inter-species interactions; with the vortex-pattern structures being related to
combined effects due to inter- and intra-species interactions, with the vortex-pattern forma-
tions obtained with ϕ = 0 surviving approximately up to ϕ ≈ ϕM . Complete spatial separation
between the two-component densities under rotation is verified for large ϕ, when the DDI is
attractive. As verified, half-space angular separations occur in symmetric-dipolar cases, repre-
sented by 164Dy-162Dy; whereas radial-space separations occur for asymmetric-dipolar cases,
represented by 168Er-164Dy. Another quite relevant result obtained in Ref. [12] is the observed
effect of the mass-asymmetry in the miscibility and vortex-pattern structures. The particular
mass-imbalance sensitivity can better be appreciated in the symmetric-dipolar mixture 164Dy-
162Dy for δ = 1, when all the differences between the density patterns should be attributed to
the small mass-asymmetry.

Next, we report new results with the trap interaction as given by Eq. (3), with a quartic
term added to the harmonic interaction of the more-massive component of both two mixtures.

3.2 Dipolar symmetric 164Dy-162Dy mixture, with a quartic trap applied to 164Dy

As discussed above, being dipolar symmetric, with a11 = a22 = 131a0, this 164Dy-162Dy BEC
mixture exposes more miscible properties. As verified in Ref. [12], this mixture in the rotating
harmonic trap [with κi = 0 in Eq. (3)] shows triangular, squared, rectangular-shaped, double
core, striped, and with domain wall vortex lattices regarding the ratio between inter- and
intra-species contact interaction. Also, this mixture shows complete spatial separation at large
polarization angles, where the DDI is purely attractive. By modifying the external confinement
of one of the components, we can introduce some external asymmetry to the mixture. So, in
this contribution, for this binary system we start by adding a very weak quartic term in the first
component of the mixture, in order to analyze the miscibility and complete spatial separation of
the coupled system. We consider two different miscible cases, with δ = 1 and 1.45. For these
particular cases, striped and domain wall vortex structures are observed [12], respectively,
when both species are under identical rotating harmonic pancake-like traps, with λ = 20
and Ω = 0.6. By adding a quartic term to the trap, as explained in section 2, we have also
reduced the number of atoms to Ni = 5000 and increased the frequency to Ω = 0.75 in order
to improve our observation on the corresponding rotational structure and spatial separation.
In this case, ring lattice structures can be verified, also verified even for single component
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BECs. From our results, in this communication, we select three different orientation angles of
the dipoles, given by ϕ = 0◦, 45◦ and 90◦, in which the first (ϕ = 0◦) provides complete
repulsive DDI, the second (ϕ = 45◦) is weakly repulsive, with the DDI of the third ϕ = 90◦

being complete attractive. As shown by our results presented in Fig. 1, the small weak quartic
perturbation in the trap, given by κ = 0.05, induces radial spatial separations between the
condensate densities, displaying ring lattice structure in the second component as shown in
the panels (a) to (e) of Fig. 1. The quartic trap term added to the first component makes
the first component more confined than the second one. So the second component becomes
radially phase-separated, changing the previous patterns observed in Ref. [12] for κ= 0. Such
similar behavior for non-dipolar mixtures was also analyzed theoretically recently in Ref. [16].

To improve our understanding of the phase separation and the effect of the added quartic
trap, we studied the dipolar binary system by increasing the strength κ. We observed that, for
κ ≥ 0.1, with large repulsive inter-species interaction δ = 1.45, the spatial phase separations
of the densities change completely from the previous angular to radial ones. This behavior is
indicated in Fig. 2, where the phase-separated case, displayed for ϕ = 90◦ with κ = 0.05, is
being compared with the κ = 0.08 case. So, when κ ≥ 0.1, only radial spatial separation can
be observed in the binary mixture.

3.3 Dipolar asymmetric 168Er-164Dy mixture, with a quartic trap applied to 168Er

In this subsection we consider the dipolar asymmetric 168Er-164Dy BEC system, to study the
effect of a quartic dipolar trap applied to the first component (168Er) of the mixture. As re-
ported in Ref. [12] for this asymmetric-dipolar case, when κi = 0 in the rotating confining
harmonic trap given by Eq. (3), one should observe triangular, square-shaped, and circular
lattices, by varying the inter-species interaction. The interplay between the inter-species re-
pulsive character, shown by increasing δ, together with the attractive role of the DDI as the
polarization angle is increased, have shown radial density distributions for the binary mixture
such that for ϕ = 0◦ and δ ≥ 1 the 168Er element is at the center of the mixture (surrounded
by 164Dy), moving to the external part when the dipolar interaction becomes more attractive,
with ϕ = 90◦, with an exchange of the densities.

Now, with the present study, by increasing the external trap interaction with the quartic
term, as given by Eq. (3) with κ = 0.05, one can already observe some differences in the
pattern distribution of the vortices of both mixtures, as shown in Fig. 3. However, one should
notice that, for the complete spatial separation that occurs for ϕ = 90◦, the position of both
elements remains as in the case that κ= 0, implying that the added quartic term is not enough
to change the position of the density distributions. More interesting behavior can be observed
by increasing the strength of the quartic term, as verified in the Fig. 4, by considering ϕ = 90◦

with δ = 1.45. In the left panels of this figure, we consider κ = 0.25, where we can verify
that the previous radial distribution of the densities is being modified with the radius of the
first component being reduced. With κ = 1, we finally obtain a radial spatial separation in
which the 168Er condensate is occupying the center, surrounded by the 164Dy condensate. The
densities of the two components interchange their positions in relation to the case that κ= 0,
due to the quartic trap term, which is dominating the confinement of the 168Er condensate.

4 Summary

By considering the symmetric- and asymmetric-dipolar coupled mixtures, respectively given
by 164Dy-162Dy and 168Er-164Dy, in this communication we have first discussed rotational prop-
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Figure 1: 2D Dipolar density patterns, |ψ j|2, where j =1 is for 164Dy and j = 2 for
162Dy, are shown for δ = 1 [(a j) to (c j)] and δ = 1.45 [(d j) to (f j)]. The dipole
polarization angles (ϕ = 0◦, 45◦, 90◦) are indicated at the top of each column, with
the 164Dy component having the addition of a quartic trap with κ= 0.05. The other
parameters are: N j=1,2 = 5000, λ= 20, a11 = a22 = 50a0 and Ω= 0.75.

Figure 2: 2D Dipolar density patterns, |ψ j|2, where j =1 is for 164Dy and j = 2 for
162Dy, are shown for ϕ = 90◦ and δ = 1.45. The quartic trap added to component 1
is such that κ = 0.05 in the left panel and 0.08 in the right panel. As in Fig. 1, the
other parameters are: N j=1,2 = 5000, λ= 20, a11 = a22 = 50a0 and Ω= 0.75.
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Figure 3: 2D Dipolar density patterns, |ψ j|2, where j =1 is for 168Er and j = 2 for
164Dy, are shown for δ = 1 [(a j) to (c j)] and δ = 1.45 [(d j) to (f j)]. The dipole
polarization angles (ϕ = 0◦, 45◦, 90◦) are indicated at the top of each column, with
the 168Er component having the addition of a quartic trap with κ = 0.05. The other
parameters are: N j=1,2 = 5000, λ= 20, a11 = a22 = 50a0 and Ω= 0.75.

Figure 4: 2D Dipolar density patterns, |ψ j|2, where j =1 is for 168Er and j = 2 for
164Dy, are shown for ϕ = 90◦ and δ = 1.45. The quartic trap added to component 1
is such that κ= 0.25 in the left panel and 1 in the right panel. As in Fig. 3, the other
parameters are: N j=1,2 = 5000, λ= 20, a11 = a22 = 50a0 and Ω= 0.75.

erties, miscibility aspects, and spatial separation of these two coupled binary BEC systems, by
analyzing an investigation previously reported in Ref. [12]. In addition, new results are pre-
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sented by considering one of the elements of the coupled mixture being confined by a quartic
interaction, which is added to the previous harmonic trap potential. The relevance of this
study relies on current experimental possibilities in cold-atom laboratories to investigate such
dipolar binary systems. The stability regime and miscibility properties due to the DDI of the
coupled system are obtained numerically, by solving the corresponding GP equation within a
model where the mixture is first confined by strong pancake-like harmonic-trap potential with
aspect-ratio λ= 20 and considering repulsive two-body interactions. The DDI are tuned from
repulsive to attractive by varying the dipole polarization angle, with a clear spatial separation
verified in the densities for attractive DDI, being angular for symmetric mixtures and radial for
asymmetric ones in the case that no quartic term is present. In an extension of our previous re-
ported work, by adding the quartic term to the trap interaction, here we show how the density
distribution of both binary system, symmetric and asymmetric ones, are affected. As shown,
the quartic trap supports radial phase separations with ring lattice for both 164Dy-162Dy and
168Er-164Dy BEC mixtures, modifying the previous vortex-pattern structures and spatial sepa-
rations obtained without the quartic term interaction. Even a weak quartic trap is enough to
modify the angular spatial separation to radial ones in the dipolar 164Dy-162Dy mixture, for
attractive dipolar interactions. In the asymmetric 168Er-164Dy dipolar BEC mixture, where we
have already radial spatial separation for attractive dipolar interactions even without the quar-
tic term, with the 168Er element surrounding the other element, we have observed that, for the
addition of enough large quartic term to the 168Er element, there is an exchange of the two
coupled densities, with this element moving to the center. So, for asymmetric mixture with
repulsive inter-species interaction and attractive DDI, strong quartic trap (κ≥ 1) will prevent
exchanges between both densities, which will remain completely radial-separated spatially.
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