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Abstract

In the framework of the Faddeev equations in configuration space we perform an analysis
of quasi-bound state of the NNK̄ system within a particle model. In our approach, the
system NNK̄(sNN = 0) (NNK̄(sNN = 1)) is described as a superposition of ppK− and pnK̄0

(nnK̄0 and pnK−) states, which is possible due to a particle transition. The relation of the
particle model to the theory of a two-state quantum system is addressed and discussed
taking into account the possibilities of deep and shallow NNK̄(sNN = 0) quasi-bound
states.
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1 Introduction

Over 50 years ago a study of three possible isospin configurations of the K̄NN system led
Nogami [1] to the assumption of the possible existence of the bound state in this system: in
a antikaon-nucleons system the presence of the K− meson attracts two unbound protons to
form a K−pp cluster. Calculations performed by Akaishi and Yamazaki [2] have predicted the
possible existence of discrete nuclear bound states of K̄ in few-body nuclear systems and this
prediction was confirmed by several subsequent publications (see [3] and references herein).

The theoretical prediction of the kaonic nuclei stimulated the experimental search of the
deeply bound states of K̄ in few-body nuclear clusters through different nuclear processes.
Both experimental and theoretical advances have been made in the last two decade for study
kaonic nuclear K−pp state. The experimental and theoretical status of the K−pp is summarized
in Refs. [4–8].

Based on the results of experimental search of the K−pp cluster, one can conclude that
the situation is still controversial and the existence of the K−pp bound state has not yet been
established [4]. However, the most recently, the J-PARC E15 collaboration reported the ob-
servation of a distinct peak in the Λp invariant mass spectrum of 3He(K−, Λp)n, well below
mK +2mp, i.e., the mass threshold of the K− meson to be bound to two protons. The simplest
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fit to the observed peak gives a Breit–Wigner pole position at 47±3(stat.)+3
−6(s ys.)MeV having

a width 115 ± 7(stat.)+10
−20(s ys.) MeV, which the authors claim as a new form of the nuclear

bound system with strangeness − K−pp [9]. At the same time, one can note the theoretical
analysis of this experiment in Ref. [8], where the two quasi-bound states was predicted. The
deeply bound state has energy about -100 MeV and second one has energy about -50 MeV.

The kaonic strange dibaryon K̄NN represent a three-body systems and theoretically have
been treated in the framework of a few-body physics approaches: the variational method in-
cluding the framework of antisymmetrized molecular dynamics, method of Faddeev equations
in momentum and configuration representations, the Faddeev equations in the fixed center
approximation and method of hyperspherical harmonics in configuration space and momen-
tum representation (see reviews [5–8] and references herein). Calculations for a binding en-
ergy and width of the kaonic three-body system are performed using different potentials for
the NN interaction, as well as different potentials for the description of the kaon–nucleon
interaction. The latter are the energy-independent phenomenological K̄N potential and the
energy-dependent chiral K̄N interaction. All aforementioned approaches predict the existence
of a bound state for the K−pp. The K−pp cluster binding energy was theoretically estimated
to be approximately 10–20 MeV for energy-dependent chiral interactions and 40–90 MeV for
energy-independent K̄N interactions. The predicted values for the binding energy and the
width are in considerable disagreement: 9–95 MeV and 20–110 MeV, respectively. Interest-
ingly enough that theoretical models have disagreements related to theoretical values of the
binding energy and decay width and have a large ambiguity depending on the K̄N interaction
models and the calculation methods. There are systematic discrepancies between the theo-
retical predictions and experimental observations. For the theoretical status of K−pp refer
to [5–7] and references therein.

In the present work we study the quasi-bound state of the system NNK̄ within the method
of Faddeev equations in configuration space. We are considering the system NNK̄(sNN = 0)
as a two-state quantum system ppK−/npK̄0 within a particle representation. The latter allows
us to analyze the quasi-bound state of the system NNK̄ within two-level approach by consid-
ering it as a superposition of K−pp/K̄0pn in the framework of the potential model using NN
potential and energy-independent effective K̄N interactions.

2 Particle representation for NNK̄(sNN = 0) system: ppK− and
npK̄0 channels

In the presented work we restrict the model space to the s-wave approach. The Coulomb
interaction is not taken into account and the mass differences for the K̄0 and K− mesons (5.1
MeV [10]), and neutron and proton (1.3 MeV [11]) are ignored. This input is corresponding to
one used within isospin formalism consideration. In this scenario isospin singlet NK̄ potential
is the same for K−p and K̄0n interactions. Therefore, for NNK̄(sNN = 0) system, the singlet
isospin configurations (K−p)p and (K̄0n)p have to be equivalent. However, the pK− and nK̄0

systems are different when are taken into account the presence of the Coulomb force in pK−

system and mass differences. In Fig. 1 are presented the results for calculation for the mass
differences for the systems n + K̄0 and p + K− using Akaishi and Yamasuki (AY) potential
[12], when the Coulomb repulsion between the proton and K− is ignored. These systems are
separated by the difference of the masses with the gap of about 5 MeV as is shown in Fig. 1.
This value is small with respect to the total mass of each system, however, it is significant in
the energy scale relatively to the binding energy 30 MeV of the NK̄ .

The symmetry of the isospin picture which one wants to describe in the terms for ppK−

and npK̄0 channels is violated in the npK̄0 system. The system ppK− is described using two
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potentials (vpp and vpK−), while for the description of the system npK̄0 we are using three
different potentials: vnp, vpK̄0 and vnK̄0 . The latter two are related to the interaction of K̄0

with the proton and neutron, respectively. Following Ref. [13] we are considering the system
NNK̄(sNN = 0) using the "particle representation" instead of the isospin formalism.

Figure 1: The mass differences for the systems n + K̄0 and p + K−. The binding
energies of the ground states for the n+ K̄0 and p + K− are calculated with the AY
effective isospin singlet NK̄ potential [12]. The Coulomb force is not included in
calculations for p+ K− system.

In the present work, we consider the particle picture for the NNK̄ system and propose to
describe it as a two-level system ppK−/npK̄0 by mixing ppK− and npK̄0 configurations. The
two-level also known as two-state system is a quantum system that can exist in any quantum
superposition of two independent and physically distinguishable quantum states [14]. We
assume that in the systems ppK− and npK̄0, the nK̄0 and pK− interactions are equivalent
to singlet isospin NK̄ interaction, and the pK̄0 interaction equals to the triplet NK̄ isospin
interaction.

In the particle representation, the wave function Ψ of the coupled ppK−/npK̄0 system is
a column vector. Let’s decompose the wave functions of the systems ppK− and npK̄0 into the
usual Faddeev components [15]ψppK− = U1+W1+Y1 andψnpK̄0 = U2+W2+Y2, respectively.
The wave function Ψ of the coupled ppK−/npK̄0 system is presented as a superposition of the
wave functions of each system as:

Ψ = Aψ, ψ=

�

ψ1
ψ2

�

=

�

ψppK−

ψpnK̄0

�

=

�

U1
U2

�

+

�

W1
W2

�

+

�

Y1
Y2

�

, (1)

A=

�

α −β
β α

�

, α= sinθ , β = cosθ . (2)

Here the parameter θ defines the coupling strength and A is an unitary matrix: AAT = I .
The Schrödinger equation for the ppK− and npK̄0 systems can be written in the following

matrix form:
(H0 + Vpp, np + VpK−, pK̄0 + VpK−, nK̄0 − E)ψ= 0. (3)

In Eq. (3) H0 is the kinetic energy operator of three particles and the interactions are defined
as

Vpp, pn =

�

vpp 0
0 vpn

�

, VpK−, pK̄0 =

�

vpK− 0
0 vpK̄0

�

, VpK−, nK̄0 =

�

vpK− 0
0 vnK̄0

�

,

where the vpp and vnp are spin singlet components of the NN potential. Following Ref. [13] the
vpK− and vnK̄0 potentials are chosen as isospin singlet, while vpK̄0 isospin triplet components
of the NK̄ potential, respectively. The isospin singlet NK̄ state is related to the deeply quasi-
bound state Λ(1405) which is represented as the pK− system (see Fig. 1).
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Let us apply the unitary transformation A to (3) taking into account that AAT = I and
the first three terms in Eq. (3) are invariants relative to the A transformation due to the
simplification: mp = mn, mK− = mK̄0 , vpp = vpn, vpK− = vnK̄0 . As a result we obtain the
following equation for the wave function Ψ of the coupled ppK−/npK̄0:

((H0 + Vpp,np + VpK−,nK̄0)I + A(VpK−,pK̄0)AT − E)Ψ = 0. (4)

The potential VpK−, pK̄0 generates the matrix A(VpK−,pK̄0)AT :

V =

�

V11 V12
V21 V22

�

, (5)

where V11 = α2vpK− + β2vpK̄0 , V12 = V21 = αβ(vpK− − vpK̄0), V22 = β2vpK− + α2vpK̄0 . Thus,
the matrix A describes the coupling ppK−/npK̄0 via non-diagonal elements V12 and V21. The
isospin states of ppK− and npK̄0 are the same and the possible transformation pK−→ nK̄0 can
be described as a coupling between the systems. One should note that non-diagonal elements
V12 and V21 of the matrix (5) make the channel coupling. The coefficients α and β can be
chosen to present a coupling between the channels.

Now the Schrödinger equation (4) for the coupled ppK−/npK̄0 system can be written for
the corresponding Faddeev components. These components satisfy the following deferential
Faddeev equations (DFE):

(HU
0 + vpp − E)U1 = −vpp(W1 + Y1),

(HW
0 + vpK− − E)W1 = −vpK−(U1 + Y1),

(HY
0 + V11 − E)Y1 + V12Y2 = −V11(U1 +W1)− V12(U2 +W2),

(HU
0 + vpn − E)U2 = −vpn(W2 + Y2),

(HW
0 + vnK̄0 − E)W2 = −vnK̄0(U2 + Y2),

(HY
0 + V22 − E)Y2 + V21Y1 = −V22(U2 +W2)− V21(U1 +W1).

(6)

If α = 1, β = 0 the system of equations (6) decouples and the first three equations describe
the kaonic cluster ppK−, while last three equations describe the kaonic cluster pnK̄0. In the
case of a weak channel coupling one can assume that α ≈ 1 and β ≈ 0. Thus, describing
NNK̄ (sNN = 0) system we consider two separate states ppK− and pnK̄0. For the first one, the
s-wave approach based on the DFE leads to the following equations [16]:

(HU
0 + vpp − E)U = −vpp(W +Y),

(HW
0 + vpK− − E)W = −vpK−(U +Y),

(HY
0 + vpK− − E)Y = −vpK−(U +W),

(7)

where vpK− corresponds to the isospin singlet potential of the NK̄ interaction. The s-wave
approach for the npK̄0 system leads to the following DFE:

(HU
0 + vnp − E)U = −vnp(W +Y),

(HW
0 + vnK̄0 − E)W = −vnK̄0(U +Y),

(HY
0 + vpK̄0 − E)Y = −vpK̄0(U +W).

(8)

In Eq. (8) vpK̄0 and vnK̄0 are chosen to be correspond to isospin singlet and triplet components
of the NK̄ potential, respectively.

A particular interest presents the case when α= β = 1p
2
, which means strong coupling be-

tween the channels, and therefore we have v+ ≡ V11 = V22 =
vpK−+vpK̄0

2 and
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v− ≡ V12 = V21 =
vpK−−vpK̄0

2 and the system (6) becomes:

(HU
0 + vpp − E)U1 = −vpp(W1 + Y1) ,

(HW
0 + vpK− − E)W1 = −vpK−(U1 + Y1) ,

(HY
0 + v+ − E)Y1 + v−Y2 = −v+(U1 +W1)− v−(U2 +W2) ,

(HU
0 + vpn − E)U2 = −vpn(W2 + Y2) ,

(HW
0 + vnK̄0 − E)W2 = −vnK̄0(U2 + Y2) ,

(HY
0 + v+ − E)Y2 + v−Y1 = −v+(U2 +W2)− v−(U1 +W1) .

(9)

One can use the unitary transformation B = 1p
2

�

1 1
−1 1

�

for Y1 and Y2 in the following

form: Y ′ = BY or Y = BT Y ′, where Y = (Y1, Y2)T and

B

�

v+ v−

v− v+

�

BT =

�

vpK− 0
0 vpK0

�

to simplify the set of Eqs. (9). The transformation leads to the following set of equations:

(HU
0 + vpp − E)U1 = −vpp(W1 +

1
2(Y1 − Y2)) ,

(HW
0 + vpK− − E)W1 = −vpK−(U1 +

1
2(Y1 − Y2)) ,

(HY
0 + vpK− − E)Y1 = −vpK−(U1 +W1 + U2 +W2) ,

(HU
0 + vpn − E)U2 = −vpn(W2 +

1
2(Y1 + Y2)) ,

(HW
0 + vnK̄0 − E)W2 = −vnK̄0(U2 +

1
2(Y1 + Y2)) ,

(HY
0 + vpK̄0 − E)Y2 = −vpK̄0(U2 − U1 +W2 −W1) .

(10)

The set of Eqs. (10) allows us to make comparison with Eqs. (7) - (8) which describe the
independent ppK− and npK̄0 systems. Taking into account that vpp = vpn and vpK− = vnK̄0 ,
the set (10) can be rewritten as

(HU
0 + vpp − E)A1 = −vpp(B1 + Y1) ,

(HW
0 + vpK− − E)B1 = −vpK−(A1 + Y1) ,

(HY
0 + vpK− − E)Y1 = −vpK−(A1 + B1) ,

(HU
0 + vpn − E)A2 = −vpn(B2 + Y2) ,

(HW
0 + vnK̄0 − E)B2 = −vnK̄0(A2 + Y2) ,

(HY
0 + vpK̄0 − E)Y2 = −vpK̄0(A2 + B2) ,

(11)

where A1 = U1+U2, A2 = U2−U1, B1 =W1+W2, B2 =W2−W1. As a result, one can see that
the set of Eqs. (11) is separated into two independent sets. The first one describes the ppK−

system, while the second one corresponds to the npK̄0 system. Thus, the coupling between
ppK− and npK̄0 is eliminated under the assumption α= β .

One can obtain approximation for the set (10) taking Y2 = 0 with the condition that the
pK̄0 potential is weak and U1 ≈ U2 and W1 ≈W2. The new set has the following form:

(HU
0 + vpp − E)A1 = −vpp(B1 + Y1) ,

(HW
0 + vpK− − E)B1 = −vpK−(A1 + Y1) ,

(HY
0 + vpK− − E)Y1 = −vpK−(A1 + B1) ,

(HU
0 + vpn − E)A2 = −vpnB2 ,

(HW
0 + vnK̄0 − E)B2 = −vnK̄0A2 .

(12)

The analysis of (12) shows that again we have two independent sets. The first one describes the
ppK− system, while the second one corresponds to the npK̄0 system when the weak pK̄0 inter-
action is neglected. We will see below that the assumed conditions are satisfied in ppK−/npK̄0

calculations. One can conclude that the parameters of the pK0 interaction cannot be fixed by
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the study of ppK−/npK̄0 system due to small contribution of the corresponding Y2 component.
Note that the elimination U2 − U1 and W2 −W1 is not possible for the nnK̄0/npK− coupled
system. In this case, the difference between nn and np spin triplet potentials violates the
symmetry of the equations.

3 Numerical Results

The ground state energy of "ppK−" cluster were calculated with effective AY potentials [12]
for the K̄N interaction. We used the modified MT I-III potential [17] for the NN nuclear
interaction.

Firstly, let us pay attention to numerical analysis of Eq. (6) where we have single undefined
constant α (or β). If α = 1, β = 0 the system of equations (6) decouples and the first three
equations describe the kaonic cluster ppK−, while last three equations describe the kaonic
cluster pnK0. In opposite case we have coupling between the ppK− and pnK̄0 states. If
the coupling, defined by the potentials V12 and V21, is ignored, the systems transit as one to
another when the coupling constant α increases from 0 to 1. In Fig. 2 we present the results
of calculations for the binding energies of the ppK− and npK̄0 versus α2 for the case when
V12 and V21 are omitted in Eq. (6). Important is that the "ppK−" cluster can be described as
having two levels with the same energy for the α= 1p

2
. Taking into account that the transition

pK−/nK̄0 makes the same probability for the pK− and nK̄0 states of NK̄ system, we assume
the same probability for ppK− and npK̄0 states. According to the two-level system theory, two
levels of the ppK−/npK̄0 system are crossing when the coupling is absent. When α2 = 1

2 and
V12 = V21=0, the Hamiltonians corresponding to the ppK− and npK̄0 states are the same. It is
initial point of the theory. Switching on the coupling, i.e. considering V12 and V21 as non-zero
terms in Eq. (6), has to lead to "repulsion of the levels" or anti-crossing of the levels. Thus, the
coupling constant has to be chosen as 1p

2
. It means that the probability of the ppK− and npK̄0

states is equal in the "ppK−" cluster. The energy in this point is different from one obtained
in the framework of the "traditional" isospin NNK̄ model [16]. However, the same coupling
constant was used in Ref. [13], where an isospin model was actually employed based on a
"charge isospin basis". This choice for α creates a correspondence between the isospin and
particle models.

The numerical results for the quasi-bound state energy |ENNK̄ | of the "ppK−" cluster are
presented in Table 1. We compare the results of the isospin and particle models. The result for
isospin model is the same which was obtained early in Ref. [16] where the configuration space
Faddeev equations was also used. It can be mentioned that the nucleon-nucleon interaction is
appeared as an attractive one. The values for |ENNK̄(VNN = 0)| in the isospin model is smaller
than the value of |ENNK̄ |. In other words when the NN interaction is switched off then the
binding energy decreases. For the particle model we have calculated the energy in different
cases. For the first one, we calculated energies taking into account the coupling between the
ppK− and npK̄0 states. We obtained two energies ε1 and ε2, which are the lower and upper
energies of the quasi-doublet state ppK−/npK̄0. For the second one, we calculated energies
of separated ppK− and npK̄0 states. In this case, we had also two values for ppK− and npK̄0

system, respectively.
The attraction/repulsion character of pp potential at different distances can be explained

by Table 1. The attraction/repulsion behavior of the pp potential is appeared by comparison
of the bound state energy to one when the interaction between two nucleons is turned off
(case VNN = 0). This effect is caused by strong attractive singlet pK− potential which allows
the identical particles to be closer together. The compact system has larger binding energy.
Within the isospin model, the energy is larger than in the case when the NN potential is
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Figure 2: The binding energies of the ppK− and npK̄0 states as solutions of Eq. (6)
when V12 = 0 and V21 = 0 for different values of the coupling parameter α. The
difference of the masses of kaons does not taken into account. The energies are
measured from three-body threshold. The energy of two-body threshold is shown by
the dotted line, while the solid line presents the energy of quasi-bound state obtained
within the isospin model.

omitted. Thus, the NN potential is weakly attractive. In the particle model, the NN potential
gives the repulsive effect due to the more compact spacial configuration of the system when
the repulsive core of the potential becomes effective on short distances.

The numerical results for the NNK̄(sNN = 1) system are presented in Table 2. The system
is unbound within isospin consideration. Comparing the results to the results in Table. 1, we
see that the npK− (sNN = 1) level is located lower than npK− (sNN = 0) on 7 MeV. It is effect
of the difference of the states of nucleon pairs. The sNN = 1 state (deuteron) corresponds to
the bound state of the pair with energy of -2.23 MeV. This additional bound pair in the system
npK− (sNN = 1) leads to increasing three-body binding energy for the 7 MeV.

The nucleon-nucleon potential is not effective in triplet/triplet isospin/spin state. In used
MT-I-III potential, the corresponding component is equal to zero. The results for the nnK̄0

and ppK−(VNN = 0) systems are the same. We can evaluate the mass polarization effect [18]
for nnK̄0 system as difference between |EnnK̄0 | and 2|ENK̄ |. The value is about 20 MeV and
the relative contribution of the mass polarization to the binding energy is about 25%. Notice,
the last value depends mainly on the mass ratio of the particles in the system. For the system
where the mass of non-identical particle is essentially larger then the mass of identical particles
the effect can be neglected and |E3| ≈ 2|E2|.

The results for the coupled nnK̄0/npK− system demonstrate so called "repulsion of levels",
which we defined as extension of the energy distance between nnK̄0 and npK− levels due
to the channel coupling. The upper level of the system with the energy ε2 becomes to be
unbound. The lower level with the energy ε1 becomes to be more deeper.

It is interesting to mention that nnK̄0 system is significantly more bound than the npK−

due to two strong nK̄0 interactions which are specularly associated with the Lambda(1405)
state, while npK− is formed by the week nK− and strong pK− interactions. The attractive
contribution of the spin triplet np potential cannot compensate the weak contribution of the
nK− potential.

Finally, we present spectrum of ppK−/npK̄0 and nnK̄0/npK− bound and resonance states
in Fig. 3. The effect of coupling is shown as a "repulsion of the levels". On the left hand side
of Fig. 3, we present the results obtained for the separated systems ppK− and npK̄0 (also for
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Table 1: The quasi-bound state energy |ENNK̄ | of the "ppK−" cluster calculated within
the isospin formalism and particle model with the AY K̄N and MT I-III nucleon-
nucleon potentials. |ENK̄ | is the binding energy of the pair NK̄ (pK− or nK̄0). The
energies of the separated ppK− and npK̄0 systems are presented. The values of
|ENNK̄(VNN = 0)|when the interaction between two nucleons is turned off are shown.
ε1 and ε2 are the lower and upper energies of the quasi-doublet state ppK−/npK̄0,
respectively. The energies are given in MeV. The masses of the kaons (nucleons) are
equal to the value for averaged mass.

Model System |ENK̄ | |ENNK̄ | |ENNK̄(VNN = 0)|
Isospin NNK̄(sNN = 0) 30.3 46.0 42.9
Particle ppK−/npK̄0 ε1 70.6 80.8

ε2 30.3 –
ppK− 70.6 80.8
npK̄0 30.8 –

Table 2: The quasi-bound state energy |ENNK̄ | of the NNK̄(sNN = 1) system calcu-
lated within the isospin formalism and particle two-level system model with the AY
K̄N and MT I-III nucleon-nucleon potentials. |ENK̄ is the binding energy of the sin-
glet state of NK̄ pair (pK− or nK̄0). The energies for the separated nnK̄0 and npK−

systems are presented. The values of |ENNK̄(VNN = 0)| when the interaction between
two nucleons is turned off are shown. ε1 and ε2 are the energies of the quasi-doublet
of nnK̄0/npK− state, respectively. The energies are given in MeV.

Model System |ENK̄ | |ENNK̄ | |ENNK̄(VNN = 0)|
Isospin NNK̄(sNN = 1) 30.3 unbound –
Particle nnK̄0/npK− ε1 87.7 80.8

ε2 unbound –
nnK̄0 80.8 80.8
npK− 37.9 –

separated nnK̄0 and npK−). For comparison, the results for corresponding coupled system are
shown on the right hand site. If the repulsion of levels is take place, the energy splitting for
the quasi-doublets of coupled systems becomes larger that was for separated systems. One
can see, that this effect is only appeared for the case nnK̄0/npK−. According to Eq. (12), the
effect is not visible for the ppK−/npK̄0 case.

4 Conclusions

We proposed the two-level system treatment for NNK̄ kaonic system based on particle rep-
resentation. The cluster NNK̄(sNN = 0) is presented as two-level system including ppK−

and pnK̄0 states. The same approach is applied for the NNK̄(sNN = 1) system considered as
nnK̄0/npK− coupled states. The coupled coefficients were chosen to be α = β = 1p

2
for both

NNK̄ kaonic systems. It means that the probabilities to find the NNK̄(sNN = 0) system as
ppK− or pnK̄0 are equal.
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Figure 3: Spectrum of ppK−/npK̄0 and nnK̄0/npK− bound (double lines) and reso-
nance (dashed line) states. The two-body threshold p+(pK−) is shown by the dotted
line. The effect of the coupling is presented as a "repulsion of levels" and is shown by
connecting lines. The energies is reassured from the three-body threshold p+p+K−.
The spin of the nucleon pair is show.

We found deeply bound state of the NNK̄(sNN = 0) cluster with the energy about -72 MeV
below p + p + K− threshold using the phenomenological AY and MT potentials. Also, there
is weakly bound pnK− states with the energy -31 MeV. These states are corresponded to the
separated channels ppK− and npK̄0, respectively. The nnK̄0/npK− system has deeply bound
state with the energy above -87 MeV below n+ p + K− threshold. This state corresponds to
the nnK̄0 channel.

Thus, the sequential particle model for NNK̄ kaonic cluster provides one deeply and one
shallow bound states.
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