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Abstract

We first revisit Hartle and Hawking’s path integral derivation of Hawking radiation. In
the first point of view, we interpret that a particle-antiparticle pair is created and the
negative energy antiparticle falls into the black hole. On the other point of view, a particle
inside the horizon, or beyond the Einstein-Rosen bridge, tunnels to outside the horizon,
where this computation requires the analytic continuation of the time. These two faces
of the Hawking radiation process can be extended to not only particles but also fields.
As a concrete example, we study the thin-shell tunneling process; by introducing the
antishell as a negative tension shell, we can give the consistent interpretation for two
pictures, where one is a tunneling from inside to outside the horizon using instantons,
while the other is a shell-antishell pair-creation. This shows that the Euclidean path
integral indeed carries vast physical implications not only for perturbative, but also for
non-perturbative processes.
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1 Introduction

The tension between gravity and quantum mechanics is the fundamental but unresolved prob-
lem of modern physics. Although this is a difficult problem, there is one way to approach the
nature of quantum gravity. That is to consider quantum effects around a given classical metric,
where this is known as semi-classical gravity. This semi-classical approach is not the complete
theory, but it can include some useful and important consequences that should be implemented
by the consistent quantum theory of gravity. One of such consequences in black hole physics
is the emission of particles from the event horizon, or so-called Hawking radiation [1].

The existence of Hawking radiation was already confirmed by various approaches. The
most famous explanation is to use the Bogoliubov transformation [1]. Then, due to the redshift
of the incoming modes around the horizon, the expectation value of the number operator
of a given mode at future infinity is non-vanishing, even though the state was chosen to be
a vacuum at the past infinity. This approach includes very essential properties of Hawking
radiation, but there remain questions. For example, what physically happens at the event
horizon?

As a response of the question, one may say that there are several alternative interpretations.
First, in the tunneling picture [2–9], a particle tunnels from inside to outside the horizon.
Second, in the renormalized energy-momentum tensor picture [10], a negative energy flux
falls into the black hole. Of course, this must be two faces of the same physics. In fact, there
is a well-known correspondences between antiparticle and particle; either a particle moves
backward in time or an antiparticle moves forward in time.

In this paper, we first revisit the tunneling picture which was developed by Hartle and
Hawking [2]. The original motivation of this was to explain that a particle tunnels from inside
to outside, or equivalently, an antiparticle falls in and a particle comes out from the black hole.
In order to evaluate the probability, Hartle and Hawking used the analytic continuation of the
time of the inside the horizon. However, we will observe that this is not the unique analytic
continuation; one can also use the analytic continuation outside the horizon.

Then, this opens a possibility that the analytic continuation of the time outside the hori-
zon justifies the use of the Euclidean instantons; indeed, Hawking radiation can be inter-
preted as instantons [11]. One strong point of the instanton is that one can further extend to
non-perturbative processes [12]. In this point of view, will the correspondence between two
pictures, the particle-antiparticle pair-creation vs. the tunneling over the event horizon or the
Einstein-Rosen bridge, still be true even in the non-perturbative limit?

Although we cannot provide a complete proof about this, our answer is positive. We will
focus on the thin-shell tunneling issue [15] and first construct a tunneling channel which is
very similar to the Hartle-Hawking’s particle tunneling. From this tunneling instanton, we
will reconstruct an analogous process of the particle-antiparticle pair creation; so to speak,
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a shell-antishell pair creation. We will explain that two pictures give consistent probability
interpretations.

This paper is organized as follows. In Sec. 2, we first revisit the particle tunneling picture
of Hartle and Hawking. We can introduce the analytic continuation of the time of not only
inside but also outside the event horizon. We conclude that a particle-antiparticle pair-creation
is indeed equivalent to a tunneling over the Einstein-Rosen bridge, or the event horizon. In
Sec. 3, we approximately extend this to the field level using the Euclidean analytic continuation
and conclude that if there is a positive tension shell, its counter part (antishell) can be described
by a negative tension shell, which can be supported by the complexification of the field. In
Sec. 4, as a very natural extension, we consider a shell-antishell pair creation process, where
we can provide two points of view; one is a shell tunnels from inside to outside, while the
other is a negative tension shell falls into the horizon. Finally, in Sec. 5, we summarize our
results and discuss possible future extensions.

2 Hawking radiation as tunneling: revisit Hartle and Hawking

In this section, we review the technique introduced by Hartle and Hawking [2] and add more
comments on possible new interpretations.

2.1 Formalism

The tunneling amplitude of a particle with energy ω from x = (t,~r) to x ′ =
�

t ′,~r ′
�

(fixing
t ′ = 0) is

S
�

~r ′,~r
�

=

∫ +∞

−∞
d te−iωt K

�

0,~r ′; t,~r
�

, (1)

where

K
�

0,~r ′; t,~r
�

= −
i

4π2

1
s(x , x ′)± iε

(2)

is the propagator and s(x , x ′) is the square of the geodesic distance between x and x ′.
Note that there is a propagator dependence. If we choose the Feynman propagator, then

for x ′ > x , the pole is shifted to the upper direction, while if x ′ < x , the pole is shifted to the
lower direction. On the other hand, by choosing advanced or retarded propagator, one can
choose the location of the poles by different ways.

Since the propagator only depends on t ′ − t and s(x ′, x) is the square of the geodesic
distance, without loss of generality, we obtain

K
�

0,~r ′; t,~r
�

= K
�

t,~r; 0,~r ′
�

= K
�

−t,~r ′; 0,~r
�

. (3)

By using the second term, in order to evaluate the amplitude, we interpret that we fix a point
outside the black hole x ′ and integrate over t by sliding the point inside the black hole x , which
is the same as Hartle and Hawking. On the other hand, if we use the third term, we interpret
that we fix a point inside the black hole x and integrate over t by sliding the point outside the
black hole x ′. Then we will get the same result but obtain a different interpretation.

2.2 First point of view: particle-antiparticle pair creation

We recall the integration

S
�

~r ′,~r
�

=

∫ +∞

−∞
d te−iωt K

�

−t,~r ′; 0,~r
�

. (4)
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Figure 1: Case 1 (upper) and Case 2 (lower). For Case 1 and 2, x ′ is fixed and x is
sliding over time t. The green dashed curves show two possible points which can be
connected by null geodesics. Each null geodesic is denoted by a pole in the complex
time plain and the colors (red and blue dots) corresponds x-marks in the right dia-
gram. For each color, there are more than one x-mark, because longer geodesics can
be obtained by considering θ and ϕ angles. The poles are shifted by ±iε due to the
Feynman propagator.

If we redefine t = −T , then this integration becomes

S
�

~r ′,~r
�

=

∫ +∞

−∞
dTe−i(−ω)T K

�

0,~r; T,~r ′
�

. (5)

Now we can interpret that, in this new time coordinates T , this is equivalent to see that a
particle of negative energy −ω propagates from outside to inside the horizon. This means
that there is a particle-antiparticle pair-creation outside the horizon; and the antiparticle with
negative energy falls into the black hole.

2.3 Second point of view: tunneling from inside to outside the horizon

Now we see the analytic structure of K
�

0,~r ′; t,~r
�

as a function of t by fixing ~r and ~r ′. The
important thing to check is the pole structure, where the pole happens when x and x ′ can be
connected by null geodesics.

We will see the pole structures for three different cases.

– 1. Choice of K
�

t,~r; 0,~r ′
�

, while ~r is inside the black hole and ~r ′ is outside the black hole
(upper of Fig. 1): Following Hartle-Hawking, there appears poles in t (inside the black
hole region) as well as t − 4πMi (inside the white hole region) lines. There are two
kinds of poles, where one is x ′ > x (at Imt = 0) and the other one is x ′ < x (at
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Figure 2: Case 3. For Case 3, x is fixed and x ′ is sliding. Note that for Case 1,
x(t−4πMi) is the causal past of x ′, while for Case 3, x is always causal future of x ′.
Hence, in order to have the same analytic structure with Case 1, we need to introduce
the advanced propagator for the poles at x ′(t − 4πMi).

Figure 3: Comparison with Case 1 (left) and Case 3 (right). The contour 2 of left
should be identified to the contour 2-1 and 2-2 of right. This requires the advanced
propagator for 2-1.

Imt = −4πMi). Hence, by introducing the Feynman propagator, one can shift the poles
to the upper direction for the former and the lower direction for the latter. Then, due to
the analyticity, one can shift the time integration from t to t − 4πMi.

– 2. Choice of K
�

t,~r; 0,~r ′
�

, while both of ~r and ~r ′ are outside the black hole (lower of Fig. 1):
Again, as described by Hartle-Hawking, there appears poles only in the t line. There
are two kinds of poles, where one is x ′ > x and the other one is x ′ < x . Hence, by
introducing the Feynman propagator, the half of the poles is shifted to the upper direction
and the other half of the poles is shifted to the lower direction. Then, in the end, there
is no good way to analytically continue to the Euclidean time.

– 3. Choice of K
�

−t,~r ′; 0,~r
�

, while ~r is inside the black hole and ~r ′ is outside the black hole
(Fig. 2): Now ~r can be connected via null geodesics to ~r ′ by two ways: one is in the t
side (right side of the Penrose diagram), while the other one is in the t−4πMi side (left
side of the Penrose diagram). Note that both of them satisfy x ′ > x . Therefore, in order
to obtain the same analytic structure, we need to introduce the retarded propagator for
the former poles and the advanced propagator for the latter poles.

Therefore, the choice of the propagator for Case 3 means that we choose such a propagator
in order to make the contour integration proportional to the absorption probability (Fig. 3).
In terms of the particle trajectory, for Case 1 (left), one can approximately understand that
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the tunneling rate is calculated by two parts, where one is over the Euclidean manifold (tra-
jectory 1, inside the horizon) and the other is from inside the white hole to the future infinity
(trajectory 2), while the latter is the same as the absorption probability. The same process is
described by Case 3 (right), and hence, the absorption probability is described by the trajec-
tories 2-1 and 2-2. This means that in order to interpret this contribution as the absorption
probability, the causality of 2-1 should be regarded as opposite to the usual way.

Finally, for Case 1 and Case 3, due to the analytic structure, we can shift the time integration
from t to t − 4πMi. Then we obtain the following integration

S
�

~r ′,~r
�

= e−4πMω

∫ +∞

−∞
d te−iωt K

�

0,~r ′; t − 4πMi,~r
�

. (6)

After squaring both sides, we obtain

(emission probability) = e−8πMω × (absorption probability), (7)

that means the Hawking temperature is T = 1/8πM .

3 Extension to fields and shells

Now we understand that two points of view are equivalent, in other words, the in-coming
negative energy particle is equivalent to a positive energy particle that comes out through the
Einstein-Rosen bridge. This equivalence can be generalized to field level descriptions if we
interpret a field as a bunch of particles.

Let us consider a propagator between an initial hypersurface defined on past infinity (hin
ab,φin)

to a final hypersurface defined on the future infinity (hout
ab ,φout):

Ψ
�

hout
ab ,φout; hin

ab,φin
�

=

∫

DgµνDφ eiS[gµν,φ], (8)

where we sum over all metric gµν and matter fieldφ those connect from (hin
ab,φin) to (hout

ab ,φout).
For the ground state, we may introduce the Euclidean analytic continuation and introduce the
Euclidean path integral [18] such as

Ψ0

�

hout
ab ,φout; hin

ab,φin
�

=

∫

DgµνDφ e−SE[gµν,φ]. (9)

This Euclidean path integral can be further approximated by two assumptions [11]:

– First, we can assume a kind of symmetry and restrict to the mini-superspace, e.g., the
spherical symmetry.

– Second, we can approximate the path-integral by using the steepest-descent approxima-
tion, so-called sum-over instantons:

Ψ0

�

hout
ab ,φout; hin

ab,φin
�

'
∑

on−shell

e−Son−shell
E [gµν,φ]. (10)

One interesting point is that because of the analytic continuation, every fields should be
complexified [19]. On the other hand, we need to impose the reality condition for the initial
hypersurface as well as the final hypersurface. This means that for the intermediate geometry
between the initial and the final surfaces, it is allowed to introduce imaginary valued fields,
as long as the imaginary field value does not reach the future infinity.

004.6

https://scipost.org
https://scipost.org/SciPostPhysProc.4.004


SciPost Phys. Proc. 4, 004 (2021)

In this paper, we will restrict the complexification of only matter fields for simplicity. Then
what are the effective roles of the imaginary part, especially, of the scalar field? Let us focus
on the following points. For a (classical) scalar field, for a given time slice, we can use the
Fourier transform and split each different momentum modes.

The scalar field of each mode will be proportional to φω ∝ a(ω)e−iωt . If the internal
proper time t of the scalar field is following the backward direction, then it is equivalent to
change ω → −ω; the energy becomes negative. Or, equivalently, if we introduce overall
imaginary factor i =

p
−1 to the scalar field, i.e., φω → iφω, then it is also equivalent to

consider a negative kinetic energy (hence, an effective ghost field [24]), because the effective
number of each mode becomes negative |a(ω)|2→−|a(ω)|2. To summarize, for a given mode,
the follows are equivalent:

– A real scalar field with positive energy moves backward in time,

– A real scalar field with negative energy moves forward in time,

– An imaginary scalar field with positive energy moves forward in time.

Because of these relations, it is justifiable to introduce a negative tension shell (as long as
it does not reach to past or future infinity), that is motivated from the complexified scalar
field. For simplicity, we interpret that these imaginary (or negative tension) shell as a positive
tension shell that moves the opposite way of the coordinate time.

4 Thin-shell instantons revisited

In this section, we apply for the results of the previous sections. First, for the Hawking ra-
diation, we have two points of view for the same phenomenon: (1) a particle-antiparticle
pair-creation and (2) a particle tunneling from inside to outside the horizon, or a particle
tunnels through the Einstein-Rosen bridge, where the latter can be described by Euclidean ap-
proaches. Second, if we extend this to the field level, then the notion of the antiparticle can be
well matched to the analytically continued imaginary part of the field. In the thin-shell case,
the imaginary field will effectively give a negative tension, because its kinetic term is negative.

Now we have the following question. Will the thin-shell tunneling process (which is usu-
ally described by the Euclidean instantons [12, 27]) be equivalently described by the shell-
antishell (or, positive-tension-shell-negative-tension-shell) pair-creation process? Will these
two pictures be consistent? In this section, we will answer for these questions.

4.1 Thermal single-shell: junction equation and causal structures

We first follow rather a canonical approach: a tunneling process of a positive tension shell. We
consider a spacetime with the spherical symmetric metric ansatz

ds2
± = − f±(R)dT2 +

1
f±(R)

dR2 + R2dΩ2, (11)

where we prepare a thin-shell that locates at r: outside the shell is r < R (denoted by +) and
inside the shell is R< r (denoted by −). The thin-shell will satisfy the metric

ds2 = −d t2 + r2(t)dΩ2. (12)

We impose the metric ansatz for outside and inside the shell

f±(R) = 1−
2M±

R
−

R2

`2
±

. (13)
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Here, M+ and M− are the mass parameters of each region and

`2
± =

3
8πV±

(14)

is the parameter due to the vacuum energy V±. We assume M+ > M− (for the opposite case,
see [31]).

The equation of motion of the thin-shell is determined by the junction equation [32]:

ε−
Æ

ṙ2 + f−(r)− ε+
Æ

ṙ2 + f+(r) = 4πrσ. (15)

Here, ε± = ±1, where these ε parameters denotes the outward normal direction of the shell.
σ is the tension parameter and we choose positive value so that this satisfies the null energy
condition.

After simple calculations, we can reduce the junction equation by a simpler formula [33]:

ṙ2 + V (r) = 0, (16)

V (r) = f+(r)−

�

f−(r)− f+(r)− 16π2σ2r2
�2

64π2σ2r2
. (17)

Now we consider the nucleation of thin-shells. Such a nucleation can be explained by an in-
stanton. For simplicity, we first consider the case of the thermal excitations [35, 37], where
this requires the conditions V (rs) = V ′(rs) = 0 for a given rs; later, we will extend to a generic
instanton. The detailed condition for the thermal excitation condition is described in the Ap-
pendix of [38].

After we classify the classical trajectories, we determine signs of ε parameters by comparing
extrinsic curvatures:

β±(r)≡
f−(r)− f+(r)∓ 16π2σ2r2

8πσr
= ε±

Æ

ṙ2 + f±(r). (18)

If we choose `+ =∞, `−2
− < 0, and −`−2

− − 16π2σ2 > 0, then the only allowed solution is
ε± = +1 for all regions.

In the Euclidean signatures, the shell is in a stable local minimum and will maintain a
constant radius. Therefore, the causal structure is easy to explain. On the other hand, it is
on a unstable local maximum in the Lorentzian signatures. Therefore, after a nucleation, it is
reasonable to think that the shell either collapses or expands [37].

4.2 Thermal double-shell: junction equations and causal structures

Now we ask whether the same process can be described by a shell-antishell process. In order
to do this, we need to introduce not only a positive tension shell, but also a negative tension
shell. Due to the symmetry, it is not difficult to extend the thin-shell formalism.

We consider spacetime with the metric,

ds2
+,0,− = − f+,0,−(R)dT2 +

1
f+,0,−(R)

dR2 + R2dΩ2. (19)

We prepare two thin-shells where one is the outer shell r2 and the other is the inner shell r1
(r1 ≤ r2): outside the outer shell is r2 < R (denoted by +), inside the inner shell is R < r1
(denoted by −), and the intermediate region is r1 < R< r2 (denoted by 0).

Thin-shells will follow the metric

ds2 = −d t2 + r2
1,2(t)dΩ

2. (20)

004.8

https://scipost.org
https://scipost.org/SciPostPhysProc.4.004


SciPost Phys. Proc. 4, 004 (2021)

We impose the metric ansatz for outside and inside the shell

f+,0,−(R) = 1−
2M+,0,−

R
−

R2

`2
+,0,−

. (21)

The equations of motion of thin-shells are as follows:

ε
(2)
0

q

ṙ2
2 + f0(r2)− ε

(2)
+

q

ṙ2
2 + f+(r2) = 4πr2σ2, (22)

ε
(1)
−

q

ṙ2
1 + f−(r1)− ε

(1)
0

q

ṙ2
1 + f0(r1) = 4πr1σ1. (23)

Here, ε(1,2)
+,0,− = ±1 to denote the outward normal directions. σ1,2 are tension parameters.

If we assume M+ = M− = M , σ2 = −σ1 = σ, `+ = `− = `, and ∆± ≡ M ±M0, then

ṙ2
1,2 + V1,2(r1,2) = 0, (24)

where

V2(r2) = 1−
�

ρ2
+

64π2σ2
+
`−2

0 + `
−2
+

2
+ 4π2σ2

�

r2
2−
�

1+
ρ+

16π2σ2

∆−
∆+

�

∆+
r2
−

∆2
−

16π2σ2r4
2

, (25)

V1(r1) = 1−
�

ρ2
+

64π2σ2
+
`−2
+ + `

−2
0

2
+ 4π2σ2

�

r2
1−
�

1+
ρ+

16π2σ2

∆−
∆+

�

∆+
r1
−

∆2
−

16π2σ2r4
1

, (26)

and hence the effective potential coincide.
After we classify the classical trajectories, we determine signs of ε parameters by comparing

extrinsic curvatures:

β
(2)
+ (r2) ≡

f0(r2)− f+(r2)− 16π2σ2
2r2

2

8πσ2r2
= ε(2)+

q

ṙ2
2 + f+(r2), (27)

β
(2)
0 (r2) ≡

f0(r2)− f+(r2) + 16π2σ2
2r2

2

8πσ2r2
= ε(2)0

q

ṙ2
2 + f0(r2), (28)

β
(1)
0 (r1) ≡

f−(r1)− f0(r1)− 16π2σ2
1r2

1

8πσ1r1
= ε(1)0

q

ṙ2
1 + f0(r1), (29)

β
(1)
− (r1) ≡

f−(r1)− f0(r1) + 16π2σ2
1r2

1

8πσ1r1
= ε(1)−

q

ṙ2
1 + f−(r1). (30)

Let us define M+ = M− = M and σ2 = −σ1 = σ, so that the outer shell is a real shell and
the inner shell is an imaginary shell. We assume that ` =∞, `−2

0 < 0, and |4πσ`0|−2 > 1.
Then, the equation of motion for each shell will follow the same potential that was discussed
in the previous section. In addition, since the tension of the inner shell is negative, the signs of
the extrinsic curvatures should be always positive for both of inner and outer shells. Therefore,
from the point of crossing radius rs, the allowed solutions are only two types those are located
right patch of the Penrose diagram: branching and emerging solutions.

We consider an Euclidean analytic continuation when the effective potential satisfies the
matching condition V ′(rs) = V (rs) = 0. In this limit, if we fold two shells at r = rs, then
ṙ = 0; in Euclidean signatures this is a stable local minimum. Also, since one positive and one
negative shells are folded, effectively the Euclidean Schwarzschild manifold with mass M is
the entire Euclidean solution.

After analytic continuation to the Lorentzian time, the order of + part and − part are
changed for the left side of the causal patch. So, for the right part, we can continue to a trivial
branching shell solution. On the other hand, for the left part, the directions of outward normal
vectors are flipped. For these flipped outward normal vectors, the only possible corresponding
solution is the rotated result of the emerging shells.

004.9

https://scipost.org
https://scipost.org/SciPostPhysProc.4.004


SciPost Phys. Proc. 4, 004 (2021)

4.3 Probability: equivalence to the single-shell interpretation

For the thermal instantons, the velocity of the shell is zero on the Euclidean manifold and
maintains a constant radius r0. Since there is no dynamics of the shell on the Euclidean man-
ifold, the only contribution of the Euclidean action comes from the regularization of the cusp
of the horizon. We can calculate the probability of a single shell based on the Euclidean path
integral formalism [27], where the result is P ∼ e−2B with

2B = 2 [SE(solution)− SE(background)] = −
∆A

4
, (31)

where A is the area of the horizon. For the evaporating case,∆A< 0 and hence 2B is positive
definite.

On the other hand, if we interpret the shell-antishell pair-creation process and regard that
the negative energy falls into the black hole, the areal entropy is then changed while the
energy is conserved. Then after a sufficient Lorentzian time, we compare two solutions, where
one is the pure Schwarzschild solution with mass M+ and the other is the Schwarzschild-AdS
solution with mass M− and the cosmological constant V−. We can evaluate the Euclidean
action difference between the two solutions, because the shell dynamics will not contribute
to the probability during the Lorentzian time. As a result, the action difference between two
solutions will be the same as the areal entropy difference. As a simple check, we can evaluate
following the thermodynamic way. We can estimate the Helmholtz free energy difference as
follows [37]:

2B =
∆F
T
= −
∆A

4
, (32)

where F = E − ST is the Helmholtz free energy, E is the energy, S =A/4 is the areal entropy,
and the last equation is obtained since the energy is conserved (∆E = 0).

Therefore, we obtain the consistent and equivalent probabilities from two pictures: from
the thin-shell tunneling picture, the probability is decided by the Euclidean action integral,
while the shell-antishell pair-creation picture, the probability can be interpreted by the ther-
modynamic way.

4.4 Beyond the thermal shell limit

If one goes beyond the thermal shell, the shell will have dynamics in the Euclidean domain.
Usually, one can interpret this process such that this is a tunneling from a small radius (say,
r1) to a larger radius (say, r2). Or, alternatively, one can interpret that two shells are created
at the same time, where one is left side and the other is right side of the Einstein-Rosen bridge.
The difference of two interpretations is whether there is a contribution of the areal entropy
dependence, where the former has no such a contribution while the latter must have the term
from the regularization of the cusp of the Euclidean manifold.

Now what happens if we apply this for the double-shell model? We will interpret that the
negative tension shell will collapse from the smaller radius, while the positive tension shell
will expand from the larger radius in the Lorentzian domain. Then, in the Euclidean domain,
two shells must meet each other. Note that the Euclidean action contribution becomes [27]

2B =
Ai −Af

4
+ 2

∫ r2

r1

drr

�

�

�

�

�

cos−1

�

f+ + f− − 16π2σ2r2

2
p

f+ f−

�

�

�

�

�

�

, (33)

where the last term of the right hand side is due to the dynamics of the shell. Note that this
is symmetric up to the change of f± → f∓ and σ→ −σ. Therefore, if the two shells meet at
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r = rc , then the positive tension shell integration from r1 to r2 is the same as the negative
tension shell integration from r1 to rc plus the positive tension shell integration from rc to
r2. If we interpret the first term using the thermodynamic way (as the negative tension shell
collapses, the area decreases and hence the entropy changes), then we will eventually obtain
the same probabilistic interpretation [39].

One potential assumption is that there is no singular contribution when two shells meet
each other. This is beyond the scope of the thin-shell approximation. We leave this detailed
clarification for a future research topic.

5 Conclusion: toward generic complex-valued instantons

In this paper, we first revisited the particle tunneling from a black hole using the Hartle-
Hawking’s tunneling picture. One can interpret this process as a pair-creation of particle and
antiparticle, where the antiparticle moves from outside to inside the horizon by carrying neg-
ative energy. On the other hand, in order to evaluate the tunneling probability, one needs to
introduce the Euclidean analytic continuation of the time; original Hartle and Hawking in-
troduced the analytic continuation inside the horizon, but equivalently, we can introduce the
analytic continuation outside the horizon. Therefore, we can interpret that the pair-creation is
equivalent to a particle tunneling from inside to outside the horizon, where initially the particle
is located beyond the Einstein-Rosen bridge and connected by the Euclidean manifold.

We can ask whether this picture can be extended to more generic contexts. Due to the ana-
lytic continuation of the time, in principle, all fields can be analytically continued to complex-
valued functions. The imaginary part of the matter field will have a negative kinetic energy,
and hence, it can be interpreted by a flux of negative energy antiparticles. If this is accumu-
lated, in the thin-shell approximation, one may describe the antishell as a negative tension
shell.

In this paper, we further extended this idea. We could describe the dynamics of the shell by
using the junction equation. In addition, we can evaluate the tunneling probability following
the Euclidean path integral approach. The same thing can be done by introducing two shells,
where one has the positive tension (shell) and the other has the negative tension (antishell).
We showed that we obtain the same probability from the two interpretations, not only for
thermal shells, but also for generic processes.

Therefore, the correspondence between the pair-creation and the instanton tunneling look
very natural and fundamental, not only for the perturbative level (Hawking radiation) but
also for the non-perturbative level. This strongly indicate that the Euclidean path integral
indeed include very important and essential nature of the quantum gravity. The construction
of a shell-antishell is not difficult to imagine at once we have a matter field. One benefit of
the shell-antishell interpretation is that the understanding of the causal structure is rather
simpler, because we do not need to assume the geometry beyond the Einstein-Rosen bridge.
This will allow to understand the physical causal structure of an evaporating black hole with
non-perturbative or non-adiabatic processes, where this will do a very important role in order
to understand the information loss problem, for example, to show the possibility of a naked
black hole firewall [40] or to make the Einstein-Rosen bridge traversable [43]. In addition,
the contributions from the trivial geometries without a singularity might be dominated in the
late time [44]. This will shed some lights to the answer for the information loss paradox.

Of course, there are several issues that must be clarified. For example, we relied on the
thin-shell approximation, but we need to check whether the correspondence can be consistent
even beyond the thin-shell approximation, or not. Also, if two shells are collided, can there be
any new effects? We leave these topics for future investigations.
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