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Abstract

Most lattice studies of hot and dense QCD matter rely on extrapolation from zero or
imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts
severe limitations on the reliability of such methods. We studied the QCD chiral tran-
sition at finite real baryon density with the more direct sign reweighting approach. We
simulate up to a baryochemical potential-temperature ratio of µB/T = 2.7, covering the
RHIC Beam Energy Scan range, and penetrating the region where methods based on an-
alytic continuation are unpredictive. This opens up a new window to study QCD matter
at finite µB from first principles. This conference contribution is based on Ref. [1].
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1 Introduction

1.1 QCD at finite µB and the need for more direct methods

One of the major unsolved problems in high energy physics is the calculation of the phase
diagram of strongly interacting matter in the temperature (T) - baryochemical potential (µB)
plane. Many aspects of QCD thermodynamics at µB = 0 have been clarified by first principle
lattice QCD calculations, such as the crossover nature of the transition and the value of the
transition temperature [2–4].
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It is conjectured that at higher baryochemical potential the QCD crossover gets stronger
and above a certain point turns into a first order phase transition. The endpoint of the line of
first order transitions is called the critical endpoint. Establishing the existence and the location
of this conjectured critical endpoint is one of the main goals of the phenomenology of heavy
ion collisions and of QCD thermodynamics.

First principle lattice calculations at finite µB are, however, hampered by the notorious
complex-action problem: the path integral weights become complex numbers, and importance
sampling breaks down. A number of methods have been introduced over the years to side-step
this problem. In particular, most state-of-the-art calculations involve analytic continuation
using either i) data on Taylor coefficients of different observables at µB = 0 or ii) data at
purely imaginary chemical potentials µ2

B ≤ 0, where the sign problem is absent. An example
of an important result coming from these approaches is the calculation of the curvature of
the crossover line Tc(µB) near zero chemical potential [5–7]. Another important result is
the calculation of the Taylor coefficients of the pressure in a series expansion in the chemical
potential up to fourth order [8,9], which have been calculated on the lattice up to high enough
temperatures to match results from resummed perturbation theory [10,11].

The extension of these results to higher orders in the Taylor expansion and to higher chem-
ical potentials, however, faces immense challenges: For the Taylor method, the signal-to-noise
ratio increases significantly with increasing order of the Taylor expansions. Similarly, in the de-
termination of the same high-order coefficients with the imaginary chemical potential method,
one runs into the ill-posedness of high-order numerical differentiation. Even if the high-order
coefficients were available, extrapolation by a Taylor polynomial ansatz is limited by the ra-
dius of convergence of such an expansion. While there were attempts to locate the leading
singularity of the pressure with several different methods [12–15], these calculations have
so far not reached the continuum limit. Even if one knows the leading singularity determin-
ing the radius of convergence, it is not obvious how to go beyond it. Several resummation
schemes have been experimented with, including Padé resummation in Refs. [15–17], a joint
expansion in temperature and chemical potential along lines of constant physics in Ref. [18],
and a truncated reweighting scheme in Ref. [14]. While these methods are interesting, at the
moment they provide no clear way of going beyond the crossover region of the conjectured
phase diagram. Moreover, these type of reweighting schemes have so far been used mostly
to calculate observables that are not very sensitive to criticality - such as the pressure and the
transition line Tc(µB). Extrapolations of observables that are sensitive to criticality, such as the
width of the transition, are even less under control [7].

To shed light on the ultimate fate of the QCD crossover at finite µB, it is therefore of great
importance to come up with more direct methods, that can provide results directly at a finite
chemical potential, and are free of additional systematic effects, such as the aforementioned
analytic continuation problem of the Taylor and imaginary chemical potential methods, or the
convergence issues of complex Langevin [19–21].

1.2 Reweighting and the overlap problem

Given a theory with fields U , reweighting is a general strategy to calculate expectation values
in a target theory - with path integral weights wt and partition function Zt =

∫

DUwt(U) - by
performing simulations in a different (simulated) theory - with path integral weights ws and
partition function Zs =

∫

DUws(U). The ratio of the partition functions and expectation value
in the target theory are then given by

Zt

Zs
=
­

wt

ws

·

s
and 〈O〉t =

¬

wt
ws
O
¶

s
¬

wt
ws

¶

s

(1)
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respectively, where 〈. . . 〉t,s denotes taking expectation value with respect to the weights wt
and ws, respectively. In the present conference contribution, we will consider examples where
the target theory is QCD at finite baryochemical potential discretized on the lattice. In this
case the partition function of the target theory is:

Zµ =

∫

DU det M(U ,µ, m)e−Sg (U) =

∫

DU Re det M(U ,µ, m)e−Sg (U), (2)

where Sg is the gauge action, det M denotes the fermionic determinant, including all quark
types with their respective masses collectively denoted by m, their respective chemical poten-
tials collectively denoted by µ, as well as rooting in the case of staggered fermions, and the
integral is over all link variables U . Replacing the determinant with its real part is not per-
mitted for arbitrary expectation values, but it is allowed for i) observables satisfying either
O(U∗) =O(U) or ii) observables obtained as derivatives of Z with respect to real parameters,
such as the chemical potential, the quark mass or the gauge coupling.

Since the target theory is lattice QCD at finite chemical potential, the weights wt have
wildly fluctuating phases: this is the infamous sign problem of lattice QCD at finite baryon
density. In addition to this problem, generic reweighting methods also suffer from an overlap
problem: the probability distribution of the reweighting factor wt/ws has generally a long tail,
which cannot be sampled efficiently in standard Monte Carlo simulations.

Many attempts at reweighting to finite baryochemical potential, such as Refs. [13,22–24]
use reweighting from zero chemical potential, when the weights are proportional to the ratio of
determinants det M(µ)/det M(0). However, these studies have so far been restricted to coarse
lattices, with temporal extent Nτ = 4, and mostly an unimproved staggered action, with the
exception of Ref. [13], that uses the 2stout improved staggered action [3], albeit still at Nτ = 4.
It was actually demonstrated in Ref. [25], that the main bottleneck in extending such studies
to finer lattices is the overlap problem in the weights wt/ws, which becomes severe already at
moderate chemical potentials, where the sign problem is still numerically manageable.

This overlap problem in the weights wt/ws is not present if they take values in a compact
space. The most well-known of these approaches is phase reweighting [26, 27], where the
simulated theory - the so called phase quenched theory - has path integral weights:

ws = wPQ = |det Mud(µ)
1
2 |det Ms(0)

1
4 e−Sg . (3)

In this case the reweighting factors are pure phases:
�

wt

ws

�

PQ
= eiθ , (4)

where θ = Arg det M . We will contrast this approach with sign reweighting, where the simu-
lated - sign quenched - ensemble has weights:

ws = wSQ = |Redet Mud(µ)
1
2 |det Ms(0)

1
4 e−Sg . (5)

In this case the reweighting factor are signs:
�

wt

ws

�

SQ
= ε≡ signcosθ = ±1, (6)

provided that the target theory is the one with wt = Redet Me−Sg , i.e., provided one restricts
one’s attention to observables satisfying i) or ii).
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2 The severity of the sign problem

A measure of the strength of the sign problem in the phase reweighting scheme is given by
the expectation value of the phases

Zµ
ZPQ
= 〈cosθ 〉PQ. Similarly, in the sign reweighting scheme

the severity of the sign problem is measured by
Zµ
ZSQ
= 〈ε〉SQ. The earliest mention of the sign

reweighting approach we are aware of is Ref. [28], where it was noted that out of the reweight-
ing schemes where the weights wt/ws are a function of the phase of the quark determinant
only, sign reweighting is the optimal one, with the weakest sign problem, in the sense that
the ratio Zt/Zs is maximal. In this section we study how much one gains by this optimality
property of the sign quenched ensemble, when compared to the phase quenched ensemble.
For this purpose we introduce a simplified model - to be later compared with direct simulation
data - where the distribution of the phases θ in the phase quenched ensemble is given by a
wrapped Gaussian distribution:

PPQ(θ ) =
Gaussian
approx.

1
p

2πσ

∞
∑

n=−∞
e−

1
2σ2 (θ+2πn)2 . (7)

Once one has a model for this probability distribution, the strength of the sign problem can
be estimated in both the phase and sign quenched ensembles. The estimates and their small
chemical potential (i.e., small σ) asymptotics are given by:

〈cosθ 〉PQ
T,µ = e−

σ2(µ)
2 ∼

µB→0
1−

σ2(µ)
2

,

〈ε〉SQ
T,µ =

〈cosθ 〉PQ
T,µ

〈|cosθ |〉PQ
T,µ

∼
µB→0

1−
� 4
π

�
5
2
�

σ2(µ)
2

�

3
2

e
− π2

8σ2(µ) .
(8)

Note the two very different asymptotics at small chemical potential: the phase reweighting ap-
proach leads to a regular Taylor series, while in the sign reweighting approach the asymptotics
approach 1 faster than any polynomial.

The large-µ or large volume asymptotics are on the other hand very similar: in the large-σ
limit a wrapped Gaussian tends to the uniform distribution, and so at large chemical potential
or volume one arrives at

〈ε〉SQ
T,µ

〈cosθ 〉PQ
T,µ

∼
µB or V→∞

�∫ π

−π
dθ |cosθ |

�−1

=
π

2
, (9)

which asymptotically translates to a factor of (π2 )
2 ≈ 2.5 less statistics needed for a sign

quenched as compared to a phase quenched simulation.
To have a numerical estimate of the strength of the sign problem as a function of µ, rather

than σ we further approximate the variance of the weights by the leading order Taylor expan-
sion [29]:

σ(µ)2 ≈



θ2
�

LO = −
4
9
χud

11 (LT )3
�µB

T

�2
, (10)

where

χud
11 =

1
T2

∂ 2p
∂ µu∂ µd

|µu=µd=0 (11)

is the disconnected part of the light quark susceptibility, which is easily obtained by performing
simulations at zero chemical potential.

The simple approximations made above are actually quite close to the actual simulation
data, as can be seen in Fig. 1: our simple model predicts the strength of the sign problem both
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Figure 1: The strength of the sign problem on 2stout improved 163 × 6 staggered
lattices as a function of µB/T at T = 140 MeV (left) and as a function of T at
µB/T = 1.5. A value close to 1 shows a mild sign problem, while a small value indi-
cates a severe sign problem. Data for sign reweighting (black) and phase reweighting
(orange) are from simulations. Predictions of the Gaussian model (see text) are also
shown.

as a function of µB at a fixed temperature (left) and as a function of temperature at a fixed
µB/T (right). While deviations are visible at larger µ, even at the upper end of our µ̂B ≡

µB
T

range the deviation is at most 25%, and Eq. (9) approximates well the relative severity of the
sign problem in the two ensembles at µB/T > 1.5. This is of great practical importance, as
it makes the planning of future simulation projects with either the sign or phase reweighting
approaches relatively straightforward: simulation costs can be easily estimated beforehand.

3 Lattice setup and numerical results

For the simulations we used a tree level Symanzik improved gauge action with the staggered
Dirac operator being a function of fat links, obtained by two steps of stout smearing [30] with
parameter ρ = 0.15. We only introduce a chemical potential for the up and down quarks,
that have the same chemical potential µ = µl = µu = µd = µB/3, while for the strange
quark we have µs = 0. We used a lattice size of 163 × 6, and performed a scan in chemical
potential at fixed T = 140MeV, and a scan in temperature at fixed µB/T = 1.5. In both cases,
simulations were performed by modifying the RHMC algorithm at µB = 0 by including an

extra accept/reject step that takes into account the factor |Redet Mud (µ)
1
2 |

det Mud (0)
. The determinant was

calculated with the reduced matrix formalism [22] and dense linear algebra, with no stochastic
estimators involved.

The main observables we studied were the light quark condensate and density. The light-
quark chiral condensate was obtained via the formula

〈ψ̄ψ〉T,µ =
1

Z(T,µ)
∂ Z(T,µ)
∂mud

=
T
V

1

〈ε〉SQ
T,µ

­

ε
∂

∂mud
ln
�

�

�Re det M
1
2

ud

�

�

�

·SQ

T,µ
, (12)

using a numerical differentiation of the determinant det M = det M(U , mud , ms,µ) calculated
with the reduced matrix formalism of Ref. [22]. The step size in the derivative was chosen
small enough to make the systematic error from the finite difference negligible compared to
the statistical error. The additive and multiplicative divergences in the condensate were renor-
malized with the prescription

〈ψ̄ψ〉R(T,µ) = −
mud

f 4
π

�

〈ψ̄ψ〉T,µ − 〈ψ̄ψ〉0,0

�

. (13)
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Figure 2: The renormalized chiral condensate (left) and the light quark number-to-
light quark chemical potential ratio (right) as a function of T at fixed µB/T = 1.5,0
and 1.5i on 2stout mproved lattices at Nτ = 6. The insets show a rescaling of the
temperature axis by T → T

�

1+κ
�µB

T

�2�
, which approximately collapses the curves

onto each other if κ≈ 0.012 and 0.016 are chosen for the chiral condensate and the
quark number-to-chemical potential ratio, respectively.
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Figure 3: The renormalized chiral condensate (left) and the light quark number-to-
light quark chemical potential ratio (right) as a function of (µB/T )

2 at temperature
T = 140 MeV with the 2stout improved staggered action at Nτ = 6. Data from simu-
lations at real µB (black) are compared with analytic continuation from simulations
at imaginary µB (blue). In the left panel the value of the condensate at the crossover
temperature at µB = 0 is also shown by the horizontal line. The simulation data cross
this line at µB/T ≈ 2.2.

We also calculated the light quark density

χ l
1 ≡

∂
�

p/T4
�

∂ (µ/T )
=

1
V T3

1
Z(T,µ)

∂ Z(T,µ)
∂ µ̂

=
1

V T3〈ε〉SQ
T,µ

­

ε
∂

∂ µ̂
ln
�

�

�Re det M
1
2

ud

�

�

�

·SQ

T,µ
. (14)

In this case the derivative on a fixed configuration can be obtained analytically using the re-
duced matrix formalism. The light quark density does not have to be renormalized.

Our results for a temperature scan between 130 MeV and 165 MeV at real chemical po-
tential µB/T = 1.5, zero chemical potential, and imaginary chemical potential µB/T = 1.5i
are shown in Fig. 2. We also show that a rescaling of the temperature axis of the form
T → T

�

1+κ
�µB

T

�2�
, where κ ≈ 0.012 for the chiral condensate and κ ≈ 0.016 for χ l

1/µl

collapses the curves into each other. Such a simple rescaling indicates that up to µB/T = 1.5
the chiral crossover does not get narrower, which is what one would expect in the vicinity of
a critical endpoint.

Our results for the chemical potential scan at a fixed temperature of T = 140 MeV are
shown in Fig. 3. We have performed simulations at µB/T = 1, 1.5,2, 2.2,2.5, 2.7. The sign-
quenched results are compared with the results of analytic continuation from imaginary chem-
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ical potentials. To demonstrate the magnitude of the systematic errors of such an extrapolation
we considered two fits. (i) As the simplest ansatz, we fitted the data with a cubic polynomial
in µ̂2

B =
�µB

T

�2
in the range µ̂2

B ∈ [−10,0]. (ii) As an alternative, we also and ansätze for
both




ψ̄ψ
�

R and χ l
1/µ̂l based on the fugacity expansion p/T4 =

∑

n An cosh(nµl/T ), fitting
the data in the entire imaginary-potential range µ̂2

B ∈
�

−(6π)2, 0
�

using respectively 7 and 6
fitting parameters. Fit results are also shown in Fig. 3; only statistical errors are displayed.
While sign reweighting and analytic continuation give compatible results, in the upper half of
the µB range the errors from sign reweighting are an order of magnitude smaller. In fact, sign
reweighting can penetrate the region µ̂B > 2 where the extrapolation of many quantities is
not yet possible with standard methods [7,9].

4 Conclusions

Due to the increasing computing power of modern hardware, direct approaches to finite den-
sity QCD are becoming increasingly feasible, and are opening up a new window to study
the bulk thermodynamics of strongly interacting matter from first principles. In this confer-
ence contribution and the paper Ref. [1] which it is based on, we studied the method of sign
reweighting in detail for the first time. While the method is ultimately bottlenecked by the sign
problem, in the region of applicability it offers excellent reliability compared to the dominant
methods of Taylor expansion and imaginary chemical potentials - which always provide results
having a shadow of a doubt hanging over them due to the analytic continuation problem. We
have demonstrated that the strength of the sign problem can be easily estimated with µ = 0
simulations, making the method practical and the planning of simulation projects straightfor-
ward. We have also demonstrated that the method extends well into the regime where the
established methods start to lose predictive power, and covers the range of the RHIC Beam
Energy Scan (BES) [31,32].

The lattice action used in this study is often the first point of a continuum extrapolation
in QCD thermodynamics. Furthermore, while the sign problem is exponential in the physical
volume, it is not so in the lattice spacing. Continuum-extrapolated finite µB results in the range
of the RHIC BES and is already within reach for the phenomenologically relevant aspect ratio
of LT ≈ 3.

On a more methodological point, the phase and sign reweighting approaches only guar-
antee the absence of heavy tailed distributions when calculating the ratio of the partition
functions (or the pressure difference) of the target and simulated theories. Furthermore, the
optimum property of the sign quenched ensemble is only a statement about the denominator
of Eq. (1) (right). The optimal ensemble when both the numerator and the denominator are
taken into account is most likely, however, observable dependent. For these two reasons, the
study of the probability distributions of observables other than the pressure is an important
direction for future work.
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