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Abstract

Interesting lattice QCD simulations at high temperature in QCD and particular truncated
studies have shown the emergence of an unexpected group symmetry, so called chiral-
spin. However this is not a symmetry of the QCD action for free quarks, which makes
unclear the transition to deconfinement at high temperature in QCD. Therefore we try
to redefine this group so that is a symmetry of free quark action and it is consistent with
the presence of deconfinement in QCD.
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1 Introduction

Recent lattice QCD calculations [1–4] have shown that exists a phase in QCD at high tem-
perature where matter becomes chiralspin symmetric (denoted as stringy fluid in [1–4]). The
chiralspin group, or SU(2)CS , is quite peculiar. Indeed, it is not a symmetry of the free quark
action, which makes it not so compatible with the regime of deconfinement in QCD. However,
from the other hand lattice QCD truncated studies [5–7] (where in section 2 we will explain
in what they consist), have pointed out that SU(2)CS appears together with the emergence of
chiral but also axial symmetry. The compromise for this, is having SU(2)CS at T > Tc (with
Tc the chiral phase transition temperature), where U(1)A is approximately restored, but not
at too high temperature since QCD goes in the phase of deconfinement, where quarks interact
more weakly (quark-gluon plasma). Lattice QCD studies therefore found SU(2)CS as an ap-
proximate symmetry in the range Tc−3Tc . Nevertheless, the mechanism on how the transition
to this chiralspin symmetry regime occurs and then vanishes is not completely clear. Moreover
the fact that from truncated studies SU(2)CS is present together with chiral and axial symmetry
but differently from them, SU(2)CS is not a symmetry of free massless quark action, leads to
a veil of mystery on it.

Therefore in this proceeding we propose to construct a new type of chiralspin group in
euclidean space-time (in section 3), which we denote as SU(2)PCS (we name it P-chiralspin
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group) that is a symmetry of the free massless quark action and that can possibly explain
the truncated studies results [1–4] and consequently solving the issues previously mentioned
with SU(2)CS regarding deconfinement. For doing this, we study temporal correlators where
the space coordinates are kept fixed and then we see that a possible mass degeneracy which
could be driven by the presence of a chiralspin symmetry can be also perfectly explained by
the P-chiralspin one (look section 4). This, as has been done for SU(2)CS symmetry, gives also
consequences at high temperature QCD, where the presence of P-chiralspin can be plausible,
even at non-zero chemical potential. However lattice studies on this direction are extremely
important for having an indication that this hypothesis is correct. We also give in section 3
a constraint on the gauge field properties in order to have such SU(2)PCS symmetry in case a
gauge interaction is introduced.

2 Chiralspin group

The chiralspin group, or SU(2)CS , is defined in euclidean space-time by the following genera-
tors [8],

Σn = {γ4, iγ5γ4,−γ5}, (1)

where γ4,5 are the usual gamma matrices. It is easy to show that they form an su(2) algebra,
because [Σn,Σm] = 2iεnmkΣk, Σ†

n = Σn and Tr(Σn) = 0, for all n = 1, 2,3. The SU(2)CS
transformations for quark fields ψ and ψ̄ are

ψ(x)→ exp(iαnΣn)ψ(x), ψ̄(x)→ ψ̄(x)γ4 exp(−iαnΣn)γ4, (2)

where the 2nd transformation has been taken thinking to the minkowskian version of ψ
(namely ψ̄M = ψ

†
Mγ4). It is interesting to observe that since γ5 is one of the generators of

SU(2)CS , then U(1)A ⊂ SU(2)CS . Therefore having SU(2)CS symmetry implies the axial sym-
metry as well. The transformations (2), has been used for explaining the large mass degener-
acy in the hadron spectrum coming from the truncated studies on lattice QCD simulations. Let
us remind what these kind of studies are. For simplicity we take mesons (for baryons the argu-
ment is totally the same) and we start from a generic meson observable OΓ (x) = ψ̄(x)Γψ(x).
Here Γ is a matrix acting on the space of Dirac and flavor (but eventually also color) indices
and therefore it specifies the quantum numbers of the meson in consideration. We take other
3 observables substituting Γ → ΓΣn (n= 1, 2,3). Then the following correlators

CX (t) =
∑

x

〈OX (x)ŌX (y)〉, (3)

with X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3}, y = (0, 0) and x = (x , t), are all connected via SU(2)CS and they
are in general different at zero temperature in QCD. For practical purposes, in lattice QCD is
convenient to rewrite (3) in terms of the quark propagator D−1, inverse of the Dirac operator
D. In this situation, Eq. (3) becomes

CX (t) =
∑

x

〈Tr(X D−1(x , x))Tr(γ4X †γ4D−1(y, y))− Tr(D−1(x , y)γ4X †γ4D−1(y, x)X )〉, (4)

where the first term is called disconnected and the second is the connected one, while the trace
Tr(·) is over Dirac, flavor and color indices. The truncated studies of Refs. [5–7] consist in
substituting in (4) the quark propagator with a new one as follow

D−1→ D−1
(Λ) = D−1 −

∑

λl :|λl |<Λ

1
λl
|λl〉〈λl |, (5)
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where λl and |λl〉 are eigenvalues and eigenvectors of D and Λ > 0 is some parameter to be
tuned. Therefore in (5) the lowest eigenmodes of D are manually removed in D−1 and the
result is considering the truncated quark propagator D−1

(Λ). From the correlators (4), one can
get the hadron masses, exploiting that at large t we have CX (t) ∼ exp(−mX t). It has been
observed that after substitution (5) in (4) and for Λ up to ∼ 180 MeV at least, such exponen-
tial decay behavior still persists. We can denote the new correlator as C (Λ)X (t) and we there-

fore have C (Λ)X (t) ∼ exp(−m(Λ)X t) for large t. Now, while all mX s for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3}
are in general all different, however after removing ∼ 10 eigenmodes (which corresponds to
Λ ∼ 65 MeV ) and restricting on gauge configurations with zero topological charge Q top = 0,

then the masses m(Λ)X s get all degenerate. This means that we are in presence of the SU(2)CS
symmetry. Therefore also U(1)A ⊂ SU(2)CS is restored. In reality this is nor the only observed
thing. There is also a further hadron mass degeneration due to the restoration of chiral sym-
metry SU(NF )L × SU(NF )R, which has been explained by the group SU(2NF ), that contains
SU(NF )L × SU(NF )R × SU(2)CS as subgroup [5–8].

This suggests us to speculate that SU(2)CS should emerge in a regime where at least these
conditions are satisfied: 1) Gauge configurations with Q top = 0 are dominant; 2) the lowest
eigenmodes of D are suppressed; 3) Chiral and axial symmetries emerge. A physical regime of
QCD where at least approximately these conditions are satisfied is at high temperature above
chiral phase transition Tc , as L. Glozman in [9, 10] suggested. Indeed, the lattice results of
Refs. [1–4] have shown that in the range of temperatures Tc − 3Tc , the SU(2)CS symmetry
appears in hadron correlators. However for T > 3Tc this symmetry vanishes. The reason
is evident. QCD at high temperature approaches to a theory of weakly interacting quarks
(deconfinement), but as we explain in the next section SU(2)CS is not a symmetry of free
quark action and therefore not compatible with such regime. Nevertheless, in the range of
temperature Tc − 3Tc we can assume that quarks are still strongly interacting and therefore
the presence of SU(2)CS is well reasonable.

3 New chiralspin group definition

The chiralspin group as has been defined in Eq. (2), presents some interesting aspects. In-
deed, in contrast with chiral and axial group, SU(2)CS is not a symmetry of free massless
quark action SF =

∫

d4 x ψ̄(x)γµ∂µψ(x). This fact can be explained writing a general ele-
ment U = exp(iαnΣn), with U ∈ SU(2)CS , as product of three U(1) matrices belonging to the
groups U(1)A ⊂ SU(2)CS (generated by γ5) and U(1)4 ⊂ SU(2)CS (generated by γ4, see (1)).
This can always be done for whatever element in SU(2)CS . Namely U = Uβ1

A Uβ2
4 Uβ3

A , where

U
β1,3

A = exp(−iβ1,3γ5) ∈ U(1)A and Uβ2
4 = exp(iβ2γ4) ∈ U(1)4. Now as shown in Refs. [11,12],

while U(1)A is a symmetry of free massless quark action, U(1)4 is the part of SU(2)CS which
is not a symmetry of SF , because

∫

d4 x ψ̄(x)γi∂iψ(x), for i = 1,2, 3 is not U(1)4 invariant.
The problem is now that at first, since SU(2)CS is not a symmetry of the action of free quarks,
then it is not clear from where it comes from. Secondly, if at high temperature QCD looks to
approach in the deconfinement then we can ask on why SU(2)CS shouldn’t be compatible with
it. Third, we can still ask ourself, if we are really sure that there are not other ways (another
chiralspin definition) which also can explain the mass degeneration of the truncated studies.

Therefore here we will try to redefine U(1)4 and consequently SU(2)CS in order to make
SF invariant. The solution that we came up in Refs. [11,12] exploits the parity transformation
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for spinors. In formulae we define in substitution of U(1)4 these other group transformations

U(1)P : ψ(x)→
∞
∑

n=0

(iα)n

n!
ψ(x)P

n
, ψ̄(x)→

∞
∑

n=0

(−iα)n

n!
ψ̄(x)P

n
, (6)

whereψ(x)P
n
= γn

4ψ(P
n x) and ψ̄(x)P

n
= ψ̄(Pn x)γn

4 with P = diag(−1,−1,−1, 1) the parity
matrix, so P x = (−x , x4). Now, using that γ2k

4 = 1, ∀k, we can expand (6) as

U(1)P : ψ(x)→ cos(α)ψ(x) + i sin(α)γ4ψ(P x), ψ̄(x)→ cos(α)ψ̄(x)− i sin(α)ψ̄(P x)γ4.
(7)

As we can see the definition of U(1)P transformations is pretty similar to U(1)4, with
the difference that a parity transformation is applied to the term proportional to γ4. As
shown in Ref. [12], U(1)P is now a symmetry of SF while U(1)4 ⊂ SU(2)CS is not. There-
fore U(1)P is more suitable to construct a new type of chiralspin group which is a symme-
try of the free massless action, that includes the subgroup U(1)A. For this aim, we define
ψ±(x) = (ψ(x) ± ψ(P x))/2 and ψ̄±(x) = (ψ̄(x) ± ψ̄(P x))/2 and then we introduce the
fields

Ψ(x) =

�

ψ+(x)
ψ−(x)

�

, Ψ̄(x) =
�

ψ̄+(x) ψ̄−(x)
�

. (8)

Directly from (7), U(1)P transformations forΨ and Ψ̄ read asΨ(x)→ exp(iα(σ3⊗γ4))Ψ(x)
and Ψ̄(x)→ Ψ̄(x)γ4 exp(−iα(σ3 ⊗ γ4))γ4, where σ3 = diag(1,−1) acts in the 2-dimensional
space defined in (8). The U(1)A transformations for Ψ and Ψ̄ can be obtained in the same
way from the transformations of ψ and ψ̄. We obtain that Ψ(x)→ exp(iα(−1⊗γ5))Ψ(x) and
Ψ̄(x)→ Ψ̄(x)γ4 exp(−iα(−1⊗ γ5))γ4. Now taking the generators

ΣP
n = {σ3 ⊗ γ4,σ3 ⊗ iγ5γ4,−1⊗ γ5}, (9)

where we defined ΣP
2 = iΣP

1 Σ
P
3 , we see that they are all traceless, hermitian and satisfy

the su(2) algebra relation [ΣP
n ,ΣP

m] = 2iεnmkΣ
P
k . From these new generators, we define the

SU(2)PCS (or let say P-chiralspin) group transformations as

Ψ(x)→ exp(iαnΣ
P
n )Ψ(x), Ψ̄(x)→ Ψ̄(x)γ4 exp(−iαnΣ

P
n )γ4 , (10)

where for different parameters αn = {α1,α2,α3}, we can get the axial transformations, U(1)A,
and U(1)P transformations in (7).

This group is now different from SU(2)CS , but the transformations (10) coincide with the
ones in (2), when we apply them on the spinorsψ and ψ̄ calculated in the point x (t) = (0, x4).
Because in this case P x (t) = x (t) and consequently ψ−(x (t)) = 0 and ψ+(x (t)) = ψ(x (t))
by definition (the same apply for ψ̄±(x (t))). Moreover also U(1)P ⊂ SU(2)PCS coincide with
U(1)4 ⊂ SU(2)CS in the point x (t), since from (7),ψ(P x (t)) =ψ(x (t)) and ψ̄(P x (t)) = ψ̄(x (t)).

However, while SF is P-chiralspin symmetric, the introduction of a gauge interaction in
the action Sint = i

∫

d4 x ψ̄(x)γµAµ(x)ψ(x) breaks explicitly SU(2)PCS , in particular its sub-
group U(1)P of (7). As shown in [11], gauge configurations with non zero topological charge
Q top 6= 0 (as instantons) break explicitly SU(2)PCS . Hence we need to restrict in the zero
topological sector, and in that case a sufficient condition for the gauge field structure is given
as A4(x) = A4(P x) and Ai(x) = −Ai(P x), for i = 1,2, 3, which makes Sint invariant under
SU(2)PCS .

Therefore we conclude saying that SU(2)PCS solves the first two problems which we men-
tioned at the beginning of this section. The reason is because, since it is a symmetry of the free
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massless quark action then, it is compatible with the possibility of deconfinement in QCD. Nev-
ertheless it remains to see if SU(2)PCS can explain the same mass degeneration of the truncated
studies, originally explained by SU(2)CS . We see this point in the next section.

4 Correlators

As we have done in section 2, here we concentrate on mesons, but for baryons the argument
does not change much as outlined in Refs. [11, 12]. Besides Eq. (3), another way of getting
meson masses is to fix for example the space x = 0 and consider the correlators

CX (0, t) = 〈OX (0, t)ŌX (0, 0)〉, (11)

with OX (0, t) = ψ̄(0, t)Xψ(0, 0) and ŌX (0, 0) = ψ̄(0, 0)γ4X †γ4ψ(0, 0). For large t, we still
have the exponential decay with the meson mass mX , i.e. CX (0, t)∼ exp(−mX t) and it can be
evaluated by computation of the quark propagator as in (4), since we can rewrite (11) as

CX (0, t) = 〈Tr(X D−1(0, t;0, t))Tr(γ4X †γ4D−1(0, 0;0, 0))

− Tr(D−1(0, t;0, 0)γ4X †γ4D−1(0, 0;0, t)X )〉.
(12)

As we have seen in section 2, the presence of SU(2)CS comes from the fact that the mX s
for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} are all equal. However we have also observed that SU(2)CS and
SU(2)PCS transformations when applied on ψ(0, t) and ψ̄(0, t), are the same.

Consequently this also applies on the two observables OX (0, t) and ŌX (0, 0), which trans-
form in the same way under SU(2)CS and SU(2)PCS . Therefore the correlators CX (0, t) in (11)
for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} can be connected by SU(2)CS or SU(2)PCS . We can’t distinguish
them. Moreover, since from CX (0, t) we can still get the masses mX s, if we see that they are
the same, then this can come from SU(2)CS or SU(2)PCS symmetry. Hence even in this case, we
can’t distinguish which type of symmetry is responsible for that. This is why SU(2)PCS can be
also suitable for explaining the mass degeneration in the truncated studies. This line of thought
can be easily extended for whatever hadron, baryons too. Repeating the same argument of
section 2 and Refs. [9,10], we can not therefore exclude that P-chiralspin symmetry is present
at high temperature QCD and this line of research would deserve more investigation.

We have said in the previous section (and proved in Refs. [11,12]) that SU(2)PCS is a sym-
metry of the free massless quark action. Therefore we expect a degeneration of the correlators
CX (0, t) for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} if we calculate them on the quark propagator in the free
case, see eq. (12). Let us check this. Now the quark propagator for free massless quarks is
simply [13] D−1

f ree(x , y) = γµ(x − y)µ/[2π2(x − y)4]. However it has a pole in (x − y)2 = 0,
and we regularize it considering a parameter ε which after the calculation of CX (0, t) one can
take the limit ε→ 0, which means considering D−1

f ree(x , y)(ε) = γµ(x − y)µ/[2π2(x − y)4+ε].

Taking for example X = Γ and inserting D−1
f ree(x , y)(ε) inside Eq. (12), where in our case x

and y can be (0, t) or (0, 0), then we get that the disconnected term is zero, since in that case
x = y . Using only the connected part we get

CΓ (0, t) f ree = − lim
ε→0
〈Tr(D−1

f ree(0, t;0, 0)(ε)γ4Γ
†γ4D−1

f ree(0, 0;0, t)(ε)Γ )〉=
1

4π4 t6
Tr(Γ †Γ ). (13)

As we observe under substitution Γ → ΓΣn with Σn given in (1), CΓ (0, t) f ree does not change.
Thus CX (0, t) f ree for X ∈ {Γ , ΓΣ1, ΓΣ2, ΓΣ3} are all equal, because Tr(Γ †Γ ) = Tr((ΣnΓ )†ΓΣn)
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for n = 1,2, 3. Therefore SU(2)PCS in the free massless case is a symmetry of the theory, as
expected to be from Ref. [11].

Let us now move forward. Suppose there is some regime at high temperature where
SU(2)PCS is a symmetry in QCD, then, if we switch on the chemical potential, SU(2)PCS still
remains a symmetry of the theory. This simply comes from the fact that the chemical potential
term in the action, i.e. S(µ) = µ

∫

d4 x ψ̄(x)γ4ψ(x), is SU(2)PCS invariant. Indeed from the
definition of ψ±, ψ̄± and Eq. (8) we have

S(µ) = µ

∫

d4 x (ψ̄+(x)γ4ψ+(x) + ψ̄−(x)γ4ψ−(x)) = µ

∫

d4 x Ψ̄(x)γ4Ψ(x), (14)

where we omitted the terms
∫

d4 x ψ̄±(x)γ4ψ∓(x) because they are zero for parity reasons.
Now S(µ) in (14) is of course invariant under SU(2)PCS transformations given in (10), which is
what we wanted to show.

5 Conclusion

We have seen that the result of truncated studies [5–7], namely the large mass degeneration
coming from the truncation of the quark propagator (5) which has been explained by the
existence of chiralspin SU(2)CS symmetry, can be also described by another group, that we
have called SU(2)PCS , or in words P-chiralspin group.

SU(2)PCS , differently from SU(2)CS , is a symmetry of free massless quark action, as chi-
ral and axial group. This fact makes SU(2)PCS compatible with the high temperature regime of
QCD, where quarks becomes deconfined. Therefore, since lattice QCD results have shown that
SU(2)CS symmetry is present approximately in the range of temperature Tc−3Tc (Tc tempera-
ture of chiral symmetry restoration), we can expect to have SU(2)PCS at high temperature too.
If so, we have shown that such P-chiralspin persists at non-zero chemical potential, because
the chemical potential part of the action is SU(2)PCS invariant. Nevertheless its presence above
Tc in QCD is something to be checked in future works.
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