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Abstract

It has been suggested that the Landau-gauge gluon propagator has complex singulari-
ties, which invalidates the Källén–Lehmann spectral representation. Since such singu-
larities are beyond the standard formalism of quantum field theory, the reconstruction
of Minkowski propagators from Euclidean propagators has to be carefully examined for
their interpretation. In this talk, we present rigorous results on this reconstruction in
the presence of complex singularities. As a result, the analytically continued Wightman
function is holomorphic in the usual tube, and the Lorentz symmetry and locality are
kept valid. On the other hand, the Wightman function on the Minkowski spacetime is a
non-tempered distribution and violates the positivity condition. Finally, we discuss an
interpretation and implications of complex singularities in quantum theories, arguing
that complex singularities correspond to zero-norm confined states.
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1 Introduction

Correlation functions are essential building blocks of a quantum field theory (QFT), and their
analytic structures provide an insight into the state space. In the last decades, correlation
functions in the Landau gauge have been studied by both lattice and continuum methods
to understand fundamental aspects of quantum chromodynamics (QCD) as well as hadron
phenomenology.

In particular, two-point functions, or propagators, have important information on QFT. For
example, the Källén–Lehmann spectral representation implies the correspondence between

017.1

https://scipost.org
https://scipost.org/SciPostPhysProc.6.017
mailto:yhayashi@chiba-u.jp
https://doi.org/10.21468/SciPostPhysProc.6
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.6.017&amp;domain=pdf&amp;date_stamp=2022-05-31
https://doi.org/10.21468/SciPostPhysProc.6.017


SciPost Phys. Proc. 6, 017 (2022)

singularities of a propagator D(k2) and states |Pn〉 non-orthogonal to the state φ(0) |0〉:

D(k2) =

∫ ∞

0

dσ2 ρ(σ
2)

σ2 − k2
, (1)

θ (k0)ρ(k
2) := (2π)3
∑

n

|〈0|φ(0)|Pn〉|2δ4(Pn − k). (2)

Observing an analytic structure would give a valuable hint for understanding fundamental
aspects of QCD, for example, the color confinement.

Therefore, based on the progress in the QCD correlation functions, there has been an in-
creasing interest in analytic structures of the QCD propagators in recent years. Some results
of recent independent approaches, e.g., numerical reconstruction techniques from Euclidean
data [1,2], models of massivelike gluons [5–8], and the ray technique of the Dyson-Schwinger
equation [3, 4], suggest that the Landau-gauge gluon propagator has complex singularities,
which are unusual singularities invalidating the Källén-Lehmann spectral representation.

On the other hand, implications of complex singularities have been less studied. There
are only old works [9–12] discussing this subject heuristically. However, since complex sin-
gularities are beyond the standard formalism of QFT, we need to consider their interpretation
carefully. Hence, we study the rigorous reconstruction of propagators with such singulari-
ties [13,14].

In this presentation, we sketch out the reconstruction of propagators and its consequences
in the presence of complex singularities.

2 Definition and main questions

We point out that complex singularities are defined in terms of Euclidean propagators. There-
fore, the reconstruction procedure from Euclidean field theory to quantum field theory should
be carefully considered. We then pose the main questions addressed in this presentation.

2.1 Definition of complex singularity

For starting a rigorous discussion, an appropriate definition should be provided.
We begin by reviewing how the analytic structures are investigated in the literature. Roughly

speaking, an analytic structure is obtained by an “analytic continuation” from Euclidean data
(Fig. 1). Obviously, there exists a fundamental issue; an analytic continuation from finite data
is not unique. The best thing we can do is a speculative study of an analytic structure using
a model. If we have a model with some theoretical backgrounds, the model propagators can
provide possible analytic structures of the QCD propagators. In this way, the analytic structures
have been examined.

We emphasize that the analytic structure to be obtained is that of an analytically-continued
Euclidean propagator. Therefore, we define complex singularity as singularity off the real axis
in the complex momentum k2

E-plane of an analytically-continued Euclidean propagator.
For technical reasons, we further assume the following properties for complex singularities:

(1) boundedness of complex singularities in |k2
E |, (2) holomorphy of D(k2

E) in a neighborhood
of the real axis except for the timelike (k2

E < 0) singularities, (3) some regularity of the timelike
singularities.

2.2 Main questions

Since complex singularity is a property of the Euclidean propagator, we need a reconstruction
to obtain its interpretation.
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Figure 1: Conceptual picture describing methodology of how an analytic structure is
investigated in the literature. Note that what we examine here is a structure on the
complexified Euclidean momentum plane.
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Figure 2: Standard reconstruction procedure and contents of our study (α) and (β).
Taken from [13].

To clarify what we should address, let us briefly summarize how we reconstruct quantum
theories from Euclidean field theories in the standard formalism [15, 16] (Fig. 2). We start
with a set of Euclidean correlation functions, called Schwinger functions. If these Schwinger
functions satisfy the Osterwalder-Schrader (OS) axioms, we can reconstruct the Wightman
functions on the Minkowski spacetime by an analytic continuation, which satisfy the Wightman
axioms. Subsequently, by the Wightman reconstruction, we can obtain a quantum theory
written in terms of states and operators from the Wightman functions.

The natural question here is whether or not we can do the same thing in the presence of
complex singularities. In what follows, we mainly discuss the following two questions corre-
sponding to the arrows (α) and (β) in Fig. 2.

(α) Is it possible to reconstruct a Wightman function W (ξ0, ~ξ) on the Minkowski spacetime
from the Schwinger function? Which conditions of the Wightman/OS axioms are pre-
served/violated?

(β) Does there exist a quantum theory reproducing the reconstructed Wightman function
W (ξ0, ~ξ) as a vacuum expectation value: W (ξ) = 〈0|φ(ξ)φ(0)|0〉? If it exists, what
states cause complex singularities?

We will answer these questions affirmatively [13,14].
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3 Reconstruction of the Wightman function and its general prop-
erties

Let us move on to the first topic (α). We reconstruct the Wightman function W (t, ~x) from
the Schwinger function with complex singularities by identifying the Schwinger function as
imaginary-time data of the Wightman function: S(τ, ~x) =W (−iτ, ~x) (τ > 0).

To answer the question (α), we proved [13,14]:

(A) The reflection positivity is violated for the Schwinger function.

(B) The holomorphy of the Wightman function W (ξ − iη) in the tube R4 − iV+ and the
existence of the boundary value as a distribution are still valid, where V+ denotes the
(open) forward light cone. Thus, we can reconstruct the Wightman function from the
Schwinger function.

(C) The temperedness and the positivity condition are violated for the reconstructed Wight-
man function. The spectral condition is never satisfied since it requires the temperedness
as a prerequisite.

(D) The Lorentz symmetry and spacelike commutativity are kept intact.

Let us see these properties with a simple example: one pair of complex conjugate poles
(e.g., the typical Gribov-Zwanziger fit),

D(k2
E) =

Z
k2

E +M2
+

Z∗

k2
E + (M∗)2

. (3)

Since any complex singularity can be written as a “sum” of complex poles from the Cauchy
integration formula, this example will capture the essential features of complex singularities.
For detailed proofs of these results, see [13].

The Schwinger function in the position space reads

S(~ξ,ξ4) =

∫

d3~k
(2π)3

ei~k·~ξ

�

Z
2E~k

e−E~k|ξ4| +
Z∗

2E∗
~k

e−E∗
~k
|ξ4|
�

, (4)

where E~k =
p

~k2 +M2 is a branch of Re E~k > 0.
(B) We now analytically continue the Wightman function starting from the imaginary-time

data S(~ξ,ξ4) =W (−iξ4, ~ξ). The straightforward integral representation,

W (ξ− iη) =

∫

d3~k
(2π)3

ei~k·(~ξ−i ~η)

�

Z
2E~k

e−iE~k(ξ
0−iη0) +

Z∗

2E∗
~k

e−iE∗
~k
(ξ0−iη0)

�

, (5)

provides a desired analytic continuation to the tube R4 − iV+. Indeed, this expression is holo-
morphic in the tube ξ− iη ∈ R4 − iV+ since the integrand decreases rapidly in |~k| for η ∈ V+.

We can take the “limit” η→ 0 (η ∈ V+) of (5) as a distribution1:

W (ξ) =

∫

d3~k
(2π)3

ei~k·~ξ

�

Z
2E~k

e−iE~kξ
0
+

Z∗

2E∗
~k

e−iE∗
~k
ξ0

�

. (6)

(C) The Wightman function (6) grows exponentially in ξ0 since E~k is complex. Therefore,
the Wightman function on the Minkowski spacetime violates the temperedness.

1A subtle point here is the integral over ~k, which is just the Fourier transformation and can be defined properly
as a distribution.
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Table 1: Wightman axioms for Wightman functions in the Minkowski spacetime.

[W0] Temperedness violated 7

[W1] Poincaré Symmetry preserved 3

[W2] Spectral Condition violated 7

[W3] Spacelike Commutativity preserved 3

[W4] Positivity violated 7

[W5] Cluster property irrelevant

The violation of positivity can be proved by the nontemperedness. For this, we show

(Positivity)⇒ (Temperedness). (7)

Intuitively, this can be understood as follows.

(i) The positivity of W (ξ) corresponds to the positivity of the sector {φ(x) |0〉}x∈R4 .

(ii) The translational invariance of the two-point function corresponds to the unitarity of the
translation operator U(a) defined on this sector: U(a)φ(x) |0〉 := φ(x + a) |0〉.

These observations lead to a “upper bound” on
|W (a)| = |〈0|φ(0)U(−a)φ(0)|0〉| ≤ |〈0|φ(0)φ(0)|0〉|, which will imply that W (a) is tem-
pered2.

(A) Similarly, the violation of the reflection positivity can be shown by the nontempered-
ness. By repeating a part of the Osterwalder-Schrader reconstruction [15] from Schwinger
functions to Wightman functions, the reflection positivity yields the temperedness of the Wight-
man function.

For the example (4), the violation of the reflection positivity can be easily checked by
observing the non-positivity of

∫

d3 ~ξ S(~ξ,ξ4).
(D) We can show the Lorentz covariance as follows in the use of holomorphy and Euclidean

rotation symmetry. First, the Schwinger function is invariant under Euclidean rotations. Then,
the analytically-continued Wightman function is invariant under infinitesimal Euclidean rota-
tions, so is invariant under its complexified version, namely infinitesimal complex Lorentz
transformations. Therefore, the reconstructed Wightman function is invariant under the re-
stricted Lorentz group in the limit of going to the Minkowski spacetime. One can also explicitly
check the Lorentz invariance of the expression (5) by a contour deformation.

For the case with a single scalar field, the locality, or the spacelike
commutativity [W (ξ) = W (−ξ) for spacelike ξ], is an immediate consequence from the
Lorentz invariance. For general cases, the locality follows from the permutation symmetry
of the Schwinger function and the complex Lorentz covariance of the holomorphic Wightman
function.

So far, we have seen general properties of complex singularities (A) – (D). We can now
answer the question (α).

(α) It is possible to reconstruct the Wightman function, and the Wightman and OS axioms
are summarized in Tables 1 and 2 in the presence of complex singularities.

Let us make some comments on the results.

• The exponential growth of the Wightman function (6) in the limits ξ0 → ±∞ has far-
reaching consequences. This strongly suggests the ill-definedness of the corresponding

2Of course, since W (ξ) is a distribution, the upper bound does not exist. Nevertheless, we can also prove the
claim rigorously in the same spirit.
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Table 2: OS axioms for Schwinger functions in the Euclidean space.

[OS0] Temperedness assumed 3

[OS1] Euclidean Symmetry assumed 3

[OS2] Reflection Positivity violated 7

[OS3] Permutation Symmetry assumed 3

[OS4] Cluster property irrelevant
[OS0’] Laplace transform condition violated (but irrelevant)

S-matrix elements. The states causing complex singularities should be therefore ex-
cluded from the physical sector by some confinement mechanism. Moreover, the time-
ordered propagator cannot be Fourier-transformed because of this exponential growth.
Thus, the simple inverse Wick rotation in the momentum space k2

E → −k2 cannot be
applied in the presence of complex singularities.

• Complex singularities are often discussed to be associated with non-locality in some
literature since they cannot appear in the usual formalism of local QFTs. However, from
(D) the compatibility with the spacelike commutativity, complex singularities themselves
do not necessarily lead to non-locality.

At first glance, from the violation of the temperedness, spectral condition, and positiv-
ity, complex singularities seem to have no interpretation. However, we argue that complex
singularities can appear in indefinite-metric QFTs.

4 Realization in quantum theory

Next, we consider the second question (β). Since complex singularities are supposed to ap-
pear in the gluon propagator in the Landau-gauge Yang-Mills theory, it is natural to consider
indefinite-metric QFTs. An important observation is that complex-energy spectra can appear
in an indefinite-metric state space. States with complex conjugate eigenvalues of a hermitian
Hamiltonian can be realized by zero-norm pairs:

(|E〉 , |E∗〉)

¨

H |E〉= E |E〉 , H |E∗〉= E∗ |E∗〉
〈E|E〉= 〈E∗|E∗〉= 0, 〈E|E∗〉 6= 0

If such a pair exists, it contributes to the Wightman function as,

〈0|φ(t)φ(0)|0〉 ⊃ (〈E∗|E〉)−1e−iE t 〈0|φ(0) |E〉 〈E∗|φ(0) |0〉

+ (〈E|E∗〉)−1e−iE∗ t 〈0|φ(0) |E∗〉 〈E|φ(0) |0〉 .

By preparing a pair (|E〉 , |E∗〉) for each momentum ~p, we can reproduce the Wightman function
reconstructed from a pair of complex poles (6). Since a complex singularity can be basically
expressed by a sum of complex poles, we reach the conclusion [13,14]:

(β) Complex singularities can be realized in indefinite-metric QFTs and correspond to pairs
of zero-norm eigenstates of complex energies.

To obtain a physical theory from an indefinite-metric QFT, we need to construct a physical
state space. A promising way is to use the Kugo-Ojima quartet mechanism [17] by the BRST
symmetry. If this mechanism works well3, the pairs of complex-energy states should be in

3Note, however, that it is highly nontrivial to see whether or not a nilpotent BRST symmetry exists in the Landau
gauge adopted in the numerical works.
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BRST quartets. In this light, it can be said that complex singularities correspond to confined
states. We can also argue that the existence of complex singularities in a propagator of the
gluon-ghost composite operator is a necessary condition for this scenario4 [14].

5 Conclusion

We have examined the reconstruction of propagators and its consequences in the presence
of complex singularities. In conclusion, the existence of complex singularities does not rule
out the possibility to reconstruct a local QFT (with an indefinite metric) although complex
singularities are out of the standard formalism of QFT as shown in Tables 1 and 2.
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