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Abstract

We discuss the analytic structure of the master integrals relevant for computing the com-
plete set of leading-colour analytic helicity amplitudes for top-quark pair production via
gluon fusion at two loops in QCD. This includes corrections due to massive fermion loops
which give rise to integrals involving elliptic curves. We also elaborate on the structure
of singularities that play an important role in the numerical evaluation of the iterated
integrals and their analytic continuation.

Copyright E. Chaubey. Received 24-02-2022 ®
This work is licensed under the Creative Commons Accepted 06-04-2022 check o
Attribution 4.0 International License. Published 20-06-2022 updates
Published by the SciPost Foundation. doi:10.21468/ciPostPhysProc.7.001

1 Introduction

The top quark is an important ingredient in understanding the fundamental forces and in par-
ticular of the electroweak symmetry breaking mechanism, due to its large mass. The Higgs
potential depends on its value and hence a precise understanding of the top quark is impera-
tive.

In the computation of two-loop amplitudes for QCD corrections to top-quark pair produc-
tion, we start including internal masses a more complicated class of special functions start
to appear. These functions include integrals over elliptic curves, which have been an area of
interest recently [1-9]. The is also the reason why the only complete two-loop amplitudes for
QCD corrections to top-quark pair production were available numerically [ 10-12] until very
recently. A study of a set of helicity amplitudes for top-quark pair production in the leading
colour approximation has been recently published in [13]. These helicity amplitudes con-
tained complete information in the narrow width approximation about top quark decays. This
included for the first time, the contributions from heavy fermion loops. These contributions
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gave rise to iterated integrals involving multiple elliptic curves, which were included in the
analytic form of the helicity amplitudes. These amplitudes were obtained by sampling Feyn-
man diagrams with finite field arithmetic [14-19]. Along with this, a numerical evaluation of
the final amplitudes in Euclidean, as well as physical region, was studied.

The computation of perturbative contributions at two-loop order with massive internal
lines involves a large number of steps, each with some technical bottlenecks. In these pro-
ceedings, we elaborate further on the analytic computations of the planar master integrals
that were presented in [13] along with discussing the technical bottlenecks in the numerical
evaluation with elliptic kernels containing multiple elliptic curves. The master integrals that
contribute to these amplitudes also included master integrals from an additional two-loop in-
tegral topology. These integrals were not available previous to the publication [13], and also
contained two elliptic master integrals. For these additional elliptic integrals we also obtained
the (canonical form) differential equation [6,20-24] and expressed the results in terms of
iterated integrals [25].

2 Definitions
We begin by first reviewing the definition of Chen’s iterated integrals [26] and an elliptic curve.

2.1 Iterated integrals

Consider a path y on an n-dimensional manifold M with starting point x; = y(0) and end-
point x; = y(1), y : [0,1] = M. Let us also consider a set of differential 1-forms {w;} and
their pullbacks to the interval [0, 1], which we denote by f;(1) dA = y*w;. The k-fold iterated
integral over w1, ..., w; along y is defined as

A Ak

M
d7t1f1(l1)f d22f>(A2) f d Ascfre(Ar) @)
0

0

Iy(wla ceey Cl)k,a.) = J

0
A

= J dA1f1(A) (@, ooy )5 A1), (2)
0

where we define the 0-fold integrals as I, (;A) = 1. The iterated integrals defined in Eq. (1)
have many useful properties [27]. Some well-known examples of iterated integrals are the
multiple polylogarithms (MPLs) [ 28], which are a special class of functions, where the 1-forms
w; are such that y*w; = %, for some ¢ € C. The class of MPLs is quite well understood.
There exist many tools for their algebraic manipulation and numerical evaluation [29-31].
However, it is not always possible to express all master integrals in terms of these functions.
This is especially true in computations that involve massive internal particles, where we often
encounter elliptic curves in the analytic structure of the master integrals.

For our work, the most important property is regarding the decomposition of the path y.
Let there be two paths a, : [0,1] — M, such that 5(0) = a(1) and let y = af8 be the path
obtained by concatenating a and 3. Then we can decompose
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2.2 Elliptic curves

A generic quartic form of an elliptic curve E is given by the equation

E : wz—(z—zl)(z—zz)(z—zg)(z—z4):O, 4
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where the z; € C. The z; define the properties of the elliptic curve and are generally functions
of the kinematic variables x = (x1,...,x,): 2; = z;(x), j € {1,2,3,4}. An elliptic curve is
associated with two elliptic periods v;. In order to define these elliptic periods, let us introduce
the auxiliary variables Z; as

Zy = (z—2)(24—23), Zo = (m3—2)(24—2), Z3=(m3—2)(2a—2). ()

The Z; satisfy the relation Z; +Z, = Z3, and can be used to define the modulus k? and the
complementary modulus k? of the elliptic curve E as k? = g—;, and k2 = 1—k? = % . Then

we can choose the two elliptic periods 1)); associated to the elliptic curve E as ¢, = 4K(lk), and
(®) §
_4ik(k . o . 1 de
Yy = ERE where K is the complete elliptic integral of the first kind K(A) = f 0 Toaass
3

3 Analytic form of the master integrals

In this section, let us discuss the analytic structure of the master integrals contributing to
our scattering amplitudes. In Fig 1 and Fig 2, we see some examples of integrals needed to
compute an analytic form of the finite remainder for the helicity amplitude. All the relevant
one- and two-loop master integrals that do not involve a closed top-loop, for example, the first
two topologies from Fig. 1, are expressible in terms of MPLs [32,33]. The two-loop topologies
that involve a single top-quark closed-loop, for example for the last three topologies from Fig. 1,
the master integrals contain elliptic curves [2,3].
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Figure 1: Master integral topologies. Black-solid lines correspond to massive par-

ticles, red-dashed lines correspond to massless particles. This figure is from [13]
licensed under CC-BY 4.0.

3.1 Elliptic curves in the master integrals

In our work, the dependence of iterated integrals on elliptic curves enters through the appear-
ance of elliptic periods in the integration kernels. The topbox diagram (Fig. 2b) has three
elliptic sub-sectors corresponding to three different elliptic curves. These curves can be ob-
tained from the maximal cuts in the Baikov representation [34-36]. We identify the three
different elliptic curves by the labels a, b, and ¢ according to the diagrams depicted in Fig. 2.

The sunrise graph (Fig. 2a) is associated with the elliptic curve E(9). The analytic results for
this topology can be written in terms of iterated integrals of modular forms, and are well-suited
for numerical evaluation [4,8,9,37]. The second elliptic curve E (®) is the one associated with
the topbox sector itself (Fig. 2b). The third elliptic curve E() comes from yet another elliptic
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(a) The sunrise topology (b) The topbox topology (c) The bubblebox topology

Figure 2: Topologies in the topbox family that are associated with the elliptic curves
E@, E® and E©). Black-solid lines correspond to massive particles, red-dashed lines
correspond to massless particles. This figure is from [13] licensed under CC-BY 4.0.

sub-sector, the bubblebox sector (Fig. 2c). All the corresponding quartics (z;’s) are given by
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3.2 New elliptic master integrals

In addition to the integral topologies discussed above, for which the analytic results were
already known, we needed to include contributions from the so-called penta-triangle topology
(the last two topologies in Fig. 1). We cast the differential equations of all the master integrals
of this topology in a canonical form [6,24],

dJ = eAJ, A=A,dx+A,dy, (7)

where A does not depend on € and is rational in the kinematic variables (x, y). The kinematic
variables x and y are defined by

2
LR Gk ) S T ®
my x my
These new master integrals can be now computed order by order in € from the differen-
tial equation given in Eq. (7). We integrated the differential equation from a base point
(%0, ¥o) = (0,1) (corresponding to s = 0o and t = m?) and expressed the results of the
master integrals iteratively in the expansion parameter €. The boundary values of the inte-
grals at different orders in € were obtained from the regularity of the differential system at the
point x,y = (1, 1), where these two master integrals vanish.

Let us discuss the analytic structure of these master integrals. Both of these integrals
receive contributions from the elliptic topbox sub-sectors and hence contain elliptic iterated
integrals themselves. The fourth integral from Fig. 1 has a sunrise in its sub-sectors and hence
is associated with the elliptic curve a. The fifth integral from Fig. 1, on the other hand, contains
an elliptic subsector from the topbox which is associated with the elliptic curve b [3] and hence
is also itself elliptic.
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4 Numerical evaluations of elliptic iterated integrals

The analytic form of the amplitude is expressed using the iterated integrals, which contain
transcendental functions, inside the one forms, in the form of elliptic periods and their deriva-
tives. Since there are three different elliptic curves, the numerical evaluation of these objects
becomes highly non-trivial. In this section, we discuss the numerical computation of all the
master integrals. The integrals expressible in terms of MPLs can be evaluated to high preci-
sion, for example, using GINAC [38]. For the elliptic master integrals, we use the fact iterated
integrals satisfy the path decomposition formula. We basically need to integrate these inte-
grals from the base point (x = 0,y = 1) to any x and y. For this, we use a path involving
multiple line segments and use the path decomposition formula to patch together the contri-
bution over all the segments. Choosing the path segments can be often tricky since we need
to take into consideration both spurious as well as physical singularities of the system. We
may often need multiple path segments to get a better convergence of the results. We now
go through the techniques of the numerical evaluation of these iterated integrals in Euclidean
and the physical regions one by one.

In the Euclidean region the iterated integrals are real. To compute the iterated integrals in
this region, we start from a small neighborhood of the boundary point. This makes our task
relatively straightforward. We split the integration path from the boundary point (0, 1) to any
point (x,y) and integrate over each of these segments, where we series expand the kernels
around some points along the paths. Using the path decomposition formula Eq. (3), we then
patch together the contribution to obtain the final result. For example, we may choose the
following path segments: a, from (0,0) to (x,0) and S, from (x,0) to (x,y). Over the first
segment, all the master integrals in our case compute to only MPLs, which we can evaluate
to very high precision, as mentioned before. To integrate along the second segment, we may
expand all integration kernels around y = 1. If we wish to integrate to a point y not close to
1, we may use more segments along y and use the path decomposition formula recursively.

Let us now discuss how the computations change for the physical region. For our case, the
physical region is governed by the following equations (m? =1):

s>4,  G(p1,pyp3) =0 = s(—t>—st+2t—1)>0,

where G is the Gram-determinant, see point P in Fig. 3. To go from the Euclidean to the phys-
ical region, we analytically continue the iterated integrals around the physical branch points
and across the branch cuts appropriately. As also explained before, we do series expansion of
the integrands and use multiple one-dimensional path segments to reach our final point in the
physical region. The choice of the path is again governed by the radius of convergence of the
series. This in turn depends on the singularities present in the kernels. In the next section,
we look at the singularity structure of our system of differential equations. Since here we are
using many path segments, it is important to properly choose the number of path segments
and their sizes. This is important because the number of segments affects the speed of compu-
tation of our iterated integrals. In addition, it is needed to make sure that the series solution
converges properly on each of these segments. Let us briefly discuss the performance of in-
dividual type of elliptic iterated integrals. The analytic continuation of integrals having only
one parameter dependence is relatively easier and has also been heavily discussed in the liter-
ature [7,9,37]. The analytic continuation of all the iterated integrals that contained multiple
elliptic curves, however, is much more involved. At the boundary of the region, we choose a
proper ie prescription to analytically continue these kernels.

We now look at the singularity structure of our differential system, which plays a crucial
role in the numerical evaluation of the master integrals.
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Figure 3: Integrating to a point P in the physical region. This figure is from [13]
licensed under CC-BY 4.0.

4.1 Choice of path

The choice of path is even more important to evaluate the master integrals written in terms
of iterated integrals, in the physical region. Below we explain the observations that motivate
our choice for the path.

4.1.1 Technical challenges

Let us start by integrating the iterated integrals in our system first along x (y = constant) and
then along y (x = constant), also for the physical region, as we do for the Euclidean region.
We immediately hit a problem. On the line x=y, we encounter some functions which are not
elementary. A general form of the integrals arising in this case has the form

t™ log(—log(t))d tm Ei(mlog(t))d t* LogIntegral(t)
g ") log® ) log(o)"

dt, )

where Ei is the Exponential Integral. There is no power series expansion (specifically around
the point of expansions), but only an asymptotic series expansion [39], of LogIntegral(x)
or Ei(log(x)n), for any integer n. The occurrence of such functions can be understood as
follows. Many of our kernels contain periods in the denominator, which give rise to logarithms
when series expanded. These logarithms give rise to the functions above upon integration.
It is worth noting that these kernels cannot be handled in this form by any program which
performs a generalized series expansion of the kernels, for example [40], as we will face the
same problems. If we change our order of integration such that we first integrate along y
and then along x, we circumvent these problems. All the kernels giving rise to the type of
functions mentioned above drop out, or become simpler, because of the boundary conditions.
In addition, while crossing the line y = 0, we get a singularity for all the kernels having
periods belonging to the sunrise topology. Whereas for the elliptic kernels having both x and
y dependence, there is a singularity on the line x = y, which is the line crossing over to the
physical region. Both these types of singularities coincide, for the path shown in Fig. 3 at the
point (0,0). Therefore it is easier to integrate all the iterated integrals first along y and then
along x, motivating our choice of paths.

4.1.2 Singularity structure of the differential system

On the path shown in Fig. 3, after integrating along x = 0, we need to integrate along
y = constant line. On this second line, it is again important to choose the point of expansion
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and the number of path segments carefully. For the second line, the singularities of the kernels
in x change depending on the value of y. A good rule of thumb is that the segments should
not be larger than half the radius of convergence of the series expansion [5]. Below we show
all the singularities, computed naively by considering zeroes of all the denominators, of the
iterated integrals at particular values of y. For comparisons, we show the singularity structure
for two values of y, y = 0.2 and —1.75, before and after crossing over to the physical region.
It is clear from the pictures that for the point y=-1.75 (also true for other points in this region),
the radius of convergence is relatively big. This lets us choose fewer segments on this path,
eventually making the integration time faster.
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Figure 4: Singularities of the differential system of topbox.

The downside of choosing a path like in Fig. 3 is that the kernels no longer simplify to MPLs
on either of the parts, x = constant or y = constant, as was the case for the path chosen for
the Euclidean region. Using the path decomposition formula also in this case, we can patch
together the contributions from the different segments and compute the iterated integrals over
the whole path. For the integrals belonging to the topbox family, we analytically continue all
the iterated integrals associated with the curves a and b to the physical region, along with all
the integrals depending only on MPLs.

Analogously we can integrate into other phase-space regions. Another approach to perform
the integration in different phase space regions is to start integrating from a point already in
that region. The upside of this is that we do not need to analytically continue across the branch
cut. The downside is that for this we need to compute the boundary conditions at new base
points.

5 Conclusion

In these proceedings, we discussed the master integrals needed to compute a complete set of
analytic helicity amplitudes for the planar corrections to top quark pair production via gluon
fusion at two-loop order in QCD. We explained the analytic form of the master integrals, looked
at the singularity structure of the system of differential equations of these master integrals, and
studied their numerical evaluation. These integrals give rise to a set of special functions which
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are associated with three elliptic curves. As we elaborated in this article, the numerical eval-
uation of iterated integrals with these kernels is complicated in the current form. Here we
further discussed some of the challenges faced. Nevertheless, it was the first time that ampli-
tude level expressions were obtained for the planar corrections to top quark pair production
including the top quark loops, which resulted in analytic expressions involving elliptic curves
in the finite remainder. Despite the growth in analytic complexity, this study of the numerical
evaluation is one of the few such studies which includes functions with multiple elliptic curves
for phenomenological applications. In addition, we find interesting insights manifesting in
the form of relations between elliptic iterated integrals that leads to analytic simplification
and complete cancellation of the universal IR and UV poles.
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