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Abstract

The discrepancy between the FOPT and CIPT approaches for hadronic τ spectral func-
tion moments constitutes the major theoretical uncertainty for strong coupling determi-
nations from tau decay data. We show the discrepancy can be analytically understood
since the Borel representations – which have been assumed to be identical for both ap-
proaches previously – differ in the presence of IR renormalons. This implies that the OPE
condensate corrections are different for both approaches and that the discrepancy may
eventually be reconciled. In the talk we explain the difference and some mathematical
aspects of of the FOPT and CIPT Borel representations and show numerical results.
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1 Introduction

Moments of the τ hadronic spectral functions obtained from LEP [1,2] provide an important
tool for precise determinations of the strong coupling αs. Predictions for the spectral function
moments in the massless quark limit are based on the vacuum polarization function Π(p2),
which is known perturbatively to 5 loops (i.e. O(α4

s )) in full QCD [3–6]. Considering only for
first generation quarks and QCD corrections, the theoretical moments can be written as [7–10]

AW (s0) =
Nc
2 Sew |Vud |2

�

δtree
W +δ(0)W (s0) +

∑

d≥4δ
(d)
W (s0)

�

, (1)

where Nc = 3, Sew stands for electroweak corrections (which we do not consider further), Vud
is a CKM matrix element and s0 is the upper bound of the spectral function integration. The
term δtree

W is the tree-level contribution and δ(0)W (s0) stands for the higher order perturbative

QCD corrections. The terms δ(d)W (s0) represent condensate corrections in the framework of
the operator product expansion (OPE) [11]. They involve vacuum matrix elements of low-
energy QCD operators of increasing dimension resulting from an expansion in inverse powers
of s0. The leading dimension d = 4 term is related to the well-known gluon condensate
〈αsG

µνGµν〉. There are also so-called duality-violation corrections which can be important
phenomenologically, but which are not relevant for the subsequent discussion and therefore
suppressed in Eq.(1). Using the 5-loop results [3–6] an impressive precision of about 5% has
been achieved for αs(m2

τ) (corresponding to an uncertainty of 1.5% for αs(m2
Z)), where the

uncertainty is dominated by the perturbative error in δ(0)W (s0) [9,10,12,13].
The QCD corrections δ(0)W (s0) are obtained from the expression (x ≡ s/s0)

δ
(0)
W (s0) =

1
2πi

�
Cs

ds
s W ( s

s0
) D̂(s) = 1

2πi

�
Cx

dx
x W (x) D̂(xs0) , (2)

where D̂(s) is the partonic Adler function, 1
4π2 (1+ D̂(s)) ≡ − s dΠ̂(s)

ds and the weight function
W (x) is a polynomial in x which (together with the choice of s0) specifies the type of moment
considered. The contour path Cs (Cx) starts/ends at s = s0 ± i0 (x = 1 ± i0) and traverses
the complex s-plane, crossing the Euclidean axis half way through, with sufficient distance
from the origin such that the strong coupling stays in the perturbative regime. Through ana-
lyticity this path is related to an associated integration along the real positive s-axis over the
experimental spectral function data [10]. Frequently a circular path with |s| = s0 (|x | = 1)
is considered, but it may be deformed arbitrarily as long as it stays in the region where the
strong coupling remains perturbative. For Wτ(x) = (1 − x)3(1 + x) = 1 − 2x + 2x3 − x4

and s0 = m2
τ the moment AWτ(m

2
τ) agrees with the normalized total hadronic τ decay rate

Rτ = Γ (τ−→ hadronsντ(γ))/Γ (τ−→ e−ν̄eντ(γ)).
The two widely employed methods to calculate δ(0)W (s0) are Fixed Order Perturbation The-

ory (FOPT) and Contour Improved Perturbation Theory (CIPT). The CIPT approach is based
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on the perturbative series for the Adler function of the form1

D̂(s) =
∑∞

n=1 c̄n an(−x) , (3)

with real-valued coefficients c̄n (which agree with those of the real-valued Euclidean Adler
function for s = −s0) and complex-valued powers of the strong coupling. One carries out
the contour integration over powers of the complex-valued strong coupling αs(−s). The CIPT
series arises from truncating the sum in Eq. (3). The FOPT approach consists of expanding
the series (3) in powers of αs(s0), so that the complex phases appear exclusively in powers of
ln(−s/s0) within the integrands of the coefficients. For FOPT, the series arises from truncating
the sum in powers of αs(s0), so that the powers of the strong coupling can be factored out of
the contour integration for each series term. The CIPT approach differs from FOPT in that it
resums the powers of ln(−s/s0) to all orders along the integration path [8,14].

It is an important fact that, after the contour integration (2) is carried out for the moment
series, it is not possible anymore to switch between the FOPT and CIPT expansions by a scheme
change of αs. So the difference of the truncated FOPT and CIPT series for the spectral function
moments, is of a quite different character as the renormalization scale variations usually car-
ried out for perturbative QCD predictions. A major limitation of αs determinations from the
moments AW (s0) is that FOPT and CIPT calculations of δ(0)W (s0) for moments with good pertur-
bative convergence yield to systematic numerical differences that do not seem to be covered
by the conventional perturbative uncertainty estimates related to renormalization scale vari-
ations. Since CIPT in general leads to smaller values for δ(0)W (s0) than FOPT, extractions of
αs(m2

τ) based on CIPT generally arrive at larger values than those based on FOPT.

2 Essence of this talk

In this talk we report on the results given in Refs. [15,16], which demonstrated that the differ-
ent character of the FOPT and CIPT spectral function moment series together with the fact the
coefficients c̄n in Eq. (3) contain asymptotic (i.e. non-convergent) contributions due to infrared
(IR) renormalons [17,18] leads to a systematic disparity in the high-order behavior of the two
types of moment series. It is the above mentioned property of the FOPT and CIPT methods –
that one cannot switch between them through a change of renormalization scheme – that is
a crucial ingredient in the discussions that follow. The disparity – which we call the asymp-
totic separation – can be sufficiently sizeable and manifest itself already at very low orders to
explain the observed discrepancy between 5-loop FOPT and CIPT moments mentioned above.
However, the disparity provides a resolution to the FOPT-CIPT discrepancy problem only if the
asymptotic character is already manifest in the known perturbative coefficients up to 5-loops,
which means that the known 5-loop coefficient of D̂(s) is already dominated in a sizeable way
by the asymptotic behavior of infrared (IR) renormalons. In practice, the IR renormalon dom-
inance assumption implies that the dominant gluon condensate IR renormalon governs the
behavior of the Adler function series at 5-loops [19] in a sizeable way and that – within some
uncertainties – one can make relatively rigid predictions for the Adler function’s perturbative
coefficients beyond 5 loops using the renormalon calculus. Some evidence has been provided
supporting the IR renormalon dominance assumption for D̂(s) [20], but we stress that it cannot
be strictly proven. Thus, even though the disparity between the FOPT and CIPT series exists as
a matter of principle (because of the existence of IR renormalons in perturbative QCD [17,18])
our results provide an explanation of the observed FOPT-CIPT discrepancy at the 5 loop level

1Here we use conventions, where the 1-loop β-function coefficient has the form β0 = 11 − 2n f /3 and we

furthermore define a(−x)≡ β0 αs(−s)
4π = β0 αs(−xs0)

4π and a0 ≡
β0 αs(s0)

4π = a(1). We also take n f = 3.
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only in the context of the IR renormalon dominance assumption. We stress that this talk is not
intended to provide arguments on the validity of the IR renormalon dominance assumption,
but to discuss the principal aspects of the asymptotic separation.

In the following we provide a brief primer to the renormalon calculus (Sec. 3), explain how
the character of the FOPT and CIPT series leads to principal differences in their Borel represen-
tation in the presence of IR renormalons (Sec. 4), we address some mathematical subtleties
of the CIPT Borel representation, and we show numerical results (Sec. 5). We emphasize that
the study of the involved analytic expressions is a complicated matter, particularly in full QCD,
so that in this talk we can primarily state the outcome without going into technical details.
Many analytic results will for simplicity be written down in the large-β0 approximation (see
Ref. [16]). We refer to Ref. [15] for all details and the analytic results in full QCD.

3 Brief Primer on Renormalon Calculus

The renormalon calculus provides a convenient way to quantify the large-order behavior of
the coefficients of asymptotic series, which for any perturbative series in QCD is tied to the IR
and UV properties of the β-function [17, 18, 21–23]. Furthermore, there is a one-to-one cor-
respondence of the asymptotic contributions in the series coefficients with IR origin to power
corrections in the context of the OPE. In the following we briefly outline the basics of renor-
malon calculus to the extend needed for the understanding of the following parts of this talk.

Starting from the perturbation series σ̂ =
∑∞

n=1 dn(µ)(αs(µ)/π)n for a quantity σ in pow-
ers of (the real-valued)αs(µ), the so-called Borel function (or Borel transform) of σ̂, is defined
by B[σ̂](u) =

∑∞
n=1(4

ndn(µ))/(βn
0 Γ (n))u

n−1. In the Borel function the asymptotic n-factorial
growth of the dn coefficients with n is compensated by the inverse powers of Γ (n) such that the
Taylor series for B[σ̂](u) in powers of u is absolute convergent in a circle around the origin of
the complex Borel u-plane. The resummed function B[σ̂](u) in this circle can be analytically
continued into the entire Borel plane (at least as far as information accessible to perturbation
theory is concerned). The original series (in powers of αs) can be recovered from the B[σ̂](u)
Taylor series from the relation σ̂ =

∫∞
0 du B[σ̂](u) e−4πu/(αs(µ)β0). The so-called Borel sum is

the result of the same integral using the full function B[σ̂](u) in the entire complex u plane.
We call the integral over the full B[σ̂](u) function also the Borel representation of σ̂. Asymp-
totic contributions in the original series are related to non-analytic structures (cuts and poles)
in B[σ̂](u) in the complex u plane, where the previously mentioned radius of convergence is
related to the non-analytic structure located closest to the origin. The closer the non-analytic
structure is to the origin, the larger its impact (i.e. its dominance) in the original series. One
calls these non-analytic structures renormalons, and one furthermore distinguishes between
IR and UV renormalons. The character of these renormalons is determined from the UV and
IR properties of QCD which are directly tied to the perturbative β-function and, as far as IR
renormalons are concerned, to the form of the OPE corrections. One can consider the Borel
sum as the “all-order resummed” result of the original series for σ. However, if there are non-
analytic structures along the positive real u-axis, which usually happens for IR renormalons,
the Borel sum requires some path deformation prescription, such as the principle value (PV)
prescription, to be well-defined. Carrying out a convergent scheme change for αs (e.g. related
to a reexpansion of the series for a different renormalization scale or when using a different
renormalization condition for the strong coupling) leaves the Borel sum invariant. We also
mention that the Borel representation (and its value within any prescription) is strictly invari-
ant under a rescaling of the coupling constant, αs(µ)→ η(µ) ≡ λαs(µ) for any positive real
number λ. The latter invariance will be important in this talk.

The Borel function B[D̂](u) for the perturbative Euclidean Adler function series with the
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form D̂(−s0) =
∑∞

n=1 c̄nan
0 has been studied intensely in the past [18–20, 24–27]. The exact

form of B[D̂](u) is unknown, but each OPE term implies the existence to an additive contribu-
tion in B[D̂](u) with a specific non-analytic structure that is uniquely tied to the dimension of
the non-perturbative matrix element (condensate), its anomalous dimension, its Wilson coef-
ficient and the coefficients of the β-function. The leading OPE term is the dimension-4 gluon
condensate correction, which for the Euclidean Adler function has the form

D̂OPE
d=4(−s0) = CG2(αs(s0))

〈αsG
µνGµν〉
s2
0

. (4)

The gluon condensate correction implies the existence in B[D̂](u) of a certain linear combi-
nation of non-analytic terms 1

(2−u)γ for different rational values of γ. In the large-β0 approxi-

mation, where CG2 = 1, this linear combination collapses to the single term 1
2−u . In general,

OPE condensate corrections with dimension d are associated to certain linear combinations of
non-analytic terms 1

(d/2−u)γ , each of which then implies contributions in the coefficients dn of

the form ( β0
2d )

n( 2
d )
γ−1 Γ (γ+n−1)

Γ (γ) . This reduces to ( β0
2d )

nΓ (n) for γ = 1 and makes the asymptotic
character of the series expansion manifest. The smaller the dimension d, the stronger is the
increase with n. Since OPE corrections are known to exist for all integer values of d ≥ 4,
B[D̂](u) contains non-analytic renormalon terms of the form 1

(p−u)γ for p = 2, 3,4 . . .. The
practical limitation of the association of an OPE correction and a specific linear combination
of non-analytic renormalon contributions is that the normalization of this linear combination
within B[D̂](u) is a priori unknown (up to the fact that it is non-zero) and can only be fixed
with additional assumptions. This is the origin of the issue concerning the renormalon dom-
inance assumption mentioned in Sec. 2. Only for the large-β0 approximation, which can be
calculated from massless fermion self-energy insertions into the O(αs) gluon exchange dia-
grams, the Borel function is known exactly [28]. The large-β0 approximation is believed to
exhibit at least the qualitative features of the Borel function in full QCD.

We also mention that the gluon condensate OPE corrections almost completely cancel (up
to contributions coming to the higher order corrections to its Wilson coefficient CG2) from
the contour integral of Eq. (2), if the weight function W (x) does not contain a quadratic
term x2. At the same time, the associated perturbative behavior of δ(0)W (s0) is much better
than for weight functions with a quadratic term [20]. This is the reason why for most recent
phenomenological analyses (aiming for strong coupling determinations) only moments with
weight functions without a quadratic term have been employed. This observation is consistent
with the norm of the gluon condensate renormalon being quite sizeable, so that it already
governs the size of the known 5-loop corrections.

4 The FOPT and CIPT Borel Representations

The central aspect of our work is that the Borel representations of the FOPT and CIPT spectral
function moment series are not identical. To see this we construct the two Borel representa-
tions directly from the series terms using the form of the Borel function of the Euclidean Adler
function B[D̂] as an input, but making no further assumption about their form.

We first consider CIPT and start from the observation that the contour integrals over
1
x W (x)(αs(−xs0)

π )n, which arise for each CIPT moment series term, do a priori not allow to
cleanly identify the expansion parameter of the series – simply because the renormalization
scale of αs is integration parameter dependent. This is the very special characteristics of the
CIPT approach. It implies that we should consider the whole integral to be part of the se-
ries coefficients and reintroduce an expansion parameter by hand so that we can apply the
principles in the construction of the Borel function explained in Sec. 3. Applying the strict
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invariance mentioned at the very end of the 2nd paragraph, an appropriate choice of the ex-
pansion parameter is αs(s0), which one can conveniently pull out of the series coefficients with
the appropriate power,2

δ
(0),CIPT
W (s0) =

1
2πi

∑∞
n=1 c̄n

� �
Cx

dx
x W (x)

�

a(−x)
a0

�n �
an

0 . (5)

Now we can proceed and obtain the Borel function for the CIPT series δ(0),CIPT
W (s0),

B[δ(0),CIPT
W (s0)](ū) =

∑∞
n=1

�

1
2πi

�
Cx

dx
x W (x)

�

a(−x)
a0

�n � c̄n
Γ (n) ūn−1 (6)

= 1
2πi

�
Cx

dx
x W (x)

�

a(−x)
a0

�

B[D̂]
�

a(−x)
a0

ū
�

,

where B[D̂](u) is the Borel function of the Euclidean perturbative Adler function already men-
tioned above, defined through the series B[D̂](u) =

∑∞
n=1

c̄n
Γ (n)u

n−1 in the region of conver-
gence around the origin.

The non-analytic structures in the analytically continued expression for B[D̂](u) in the
entire complex u-plane are inherited directly to B[δ(0),CIPT

W (s0)](u). The Borel representation
of the spectral function moments in the CIPT approach thus has the form

δ
(0),CIPT
W,Borel (s0) =

∫∞
0 dū 1

2πi

�
Cx

dx
x W (x)

� a(−x)
a0

�

B[D̂]
�

a(−x)
a0

ū
�

e−
ū

a0 . (7)

This derivation does not depend on a particular form of B[D̂](u). It only assumes that the
Taylor series for B[D̂](u) in the complex u plane around the origin specifies the function un-
ambiguously in the entire complex u-plane. This is an assumption that has been made in any
past study of the Borel function of the Euclidean perturbative Adler function, even if not ex-
plicitly stated. Furthermore, it is assumed that swapping the x-integration and the sum over n
in Eq. (6), which is correct within the radius of convergence, is also allowed for the analytically
continued function. We also note that it is allowed to swap the ū and x integrations in Eq. (7).

Let us now consider the Borel representation for the perturbative moments in the FOPT
approach. To derive the Borel representation from the prescription in the 2nd paragraph of
Sec. 3 is not an easy task due to the appearance of the powers of logarithms ln(−s/s0) in
the integrals for the series coefficients, which depend on the β-function coefficients. The
derivation is, however, straightforward in the large-β0 approximation, where the series for the
Adler function in the complex plane for the expansion in powers of αs(s0) can be written down
in closed form (using a(−x) = a0

1+a0 ln(−x))

D̂(s) =
∑∞

n=1 an
0

∑n−1
i=0

(n−1)!
i!(n−i−1)! c̄n−i (− ln(−x))i . (8)

It is straightforward to show through algebraic manipulation that the Borel function of the
resulting FOPT moment series has the form (see Ref. [16])

B[δ(0),FOPT
W (s0)](u) =

1
2πi

�
Cx

dx
x W (x)B[D̂](u) e−u ln(−x) , (9)

where we again assume that swapping the contour integration and the sum over n, which is
correct within the radius of convergence, is also allowed for the analytically continued func-
tion.3 Using the relation e−u ln(−x) = e−

u
a(−x)+

u
a0 we then obtain the expression

δ
(0),FOPT
W,Borel (s0) = PV

∫∞
0 du 1

2πi

�
Cx

dx
x W (x)B[D̂](u) e−

u
a(−x) , (10)

2Any multiple of αs(s0) can be picked as the expansion parameter without changing the series terms, but αs(s0)
is convenient since it also used for the FOPT series and allows for easy comparison.

3Note that the radius of convergence of the ū-series for the CIPT moment Borel function in Eq. (6) is by a factor
of αs(s0)/αs(−s0) larger than the one for the u-series for the FOPT moment Borel function in Eq. (9).

005.6

https://scipost.org
https://scipost.org/SciPostPhysProc.7.005


SciPost Phys. Proc. 7, 005 (2022)

a(-x)
a0

(path 1a)

(path 1b)

(path 2)

p

u

IR renormalon cut

FOPT

CIPT

1 5 10 15 20 25

0.1144

0.1146

0.1148

0.1150

0.1152

0.1154

Figure 1: Left: Borel integration paths in the u-plane involved for the FOPT and
CIPT Borel representations for an IR renormalon with p > 0. The red zig-zag line
represents the renormalon cut. Right: FOPT and CIPT spectral function moment
series associated to the weight function W (x) = 1 and the Borel function 1

2−u in the
large-β0 approximation for αs(m2

τ) = 0.34 and s0 = µ2 = m2
τ.

for the Borel representation of the spectral function moments in the FOPT approach. As for
Eq. (7), it is allowed to swap the u and x integrations. It has been shown in Ref. [15] that
this expression also applies in full QCD. Prior to our work, the expression in Eq. (9) has been
adopted as the Borel representation for the FOPT moments and the CIPT moments, where the
apparent relation to the CIPT expansion was taken for granted using the argumentation that
its u expansion immediately leads to the CIPT series of Eq. (5). However, this view did not
properly account for the fact that αs(−s) cannot be used as the expansion parameter of the
CIPT moments series from the mathematical perspective.

When considering the purely perturbative interpretation of Eqs. (7) and (10) (i.e. the trun-
cated Taylor series in u or ū, which is always an analytic function) and expanding either in
αs(s0) or αs(−s) prior to the contour integration, both expressions lead to both the FOPT and
CIPT moment series and are equivalent. Furthermore, both Borel representations are formally
related through the complex-valued change of variables u = ūαs(−s)/αs(s0) = ū a(−x)/a0. If
the full Borel function B[D̂](u) were also an analytic function, this change of variables would
be sufficient to prove that both Borel representations are equivalent. However, Eqs. (7) and
(10) are not equivalent and lead to different Borel sums due to the presence of non-
analytic IR renormalons in the Euclidean Borel function B[D̂](u). Consider a generic IR
renormalon contribution of the form 1

(p−u)γ , which leads to a cut along the positive real u-
axis starting at u = p, see the left panel in Fig. 1 showing the complex u-plane. This makes
the FOPT Borel representation (10) only well-defined if an additional prescription on the u-
integration is imposed. The most common prescription used in the literature, the principal
value (PV) prescription, is to take the average of the deformations above and below the cut
(paths 1a and 1b). We have indicated it already in Eq. (10). In contrast, the CIPT Borel repre-
sentation does not require a prescription because αs(−s)/αs(s0) is complex along the contour
integration over s as long as Im[s] 6= 0. From the perspective of the u-integration in the FOPT
Borel representation, the ū integration in the CIPT Borel representation never touches the cut
and proceeds either entirely above (shown as path 2 for Im[x] > 0) or below it. Figure 1
also illustrates that the difference in the FOPT and CIPT Borel sums, called the asymptotic
separation, arises from closing path 2 with either paths 1a or paths 1b at positive real infinity.
For Im[x]> 0, the situation displayed in the figure, it arises from closing path 2 with path 1a.
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5 Essential Comments and the Asymptotic Separation

The form of the Borel representation of the CIPT spectral moments in Eq. (7) is imperative
when deriving the Borel function explicitly from the CIPT series terms. The analytic form of
the CIPT Borel representation bears a number of novel and quite subtle properties which we
briefly discuss in the following and which are important for the numerical computation of
the asymptotic separation. In the following we consider a generic IR renormalon term in the
Euclidan Adler functions Borel function of the form BIR

D̂,p,γ
(u) = 1

(p−u)γ .

5.1 Form of the Contour Integration and CIPT OPE Corrections

For the FOPT Borel representation the choice of the complex x-integration path Cx is arbitrary
as long as it is ensured that the coupling a(−x) stays in the perturbative region. For the CIPT
Borel representation an additional restriction arises because the coupling affects the analytic
properties of the CIPT Borel function (6). Let us consider the contribution to the CIPT Borel
representation due to the generic IR renormalon BIR

D̂,p,γ
(u) and for W (x) = (−x)m:

δ
(0),CIPT
{(−x)m,p,γ},Borel(s0) =

∫∞
0 dū 1

2πi

�
Cx

dx
x (−x)m

� a(−x)
a0

� e−
ū

a0
�

p− a(−x)
a0

ū
�γ . (11)

Apart from the Landau pole and the cut along the positive real x axis contained in the coupling
a(−x), there is an additional cut in the x-plane for real values of x with αs(−xs0)≥ pαs(s0)/ū.

In the large-β0 approximation this is equivalent to x ≥ x̃(ū) ≡ −e(ū−p)/pa0 = −(
Λ2

QCD
s0
)(p−ū)/p.

The value of x̄(u) is negative so that it affects the possible choices for the path Cx . For ū < p
the cut is still within the circular path |x |= 1. For ū> p it is not, so that we have to deform the
integration path Cx further into the negative real x-plane such that it crosses the real negative
axis at a value below x̃(ū). This property entails that, when ū→∞, the allowed region where
the path can cross the negative real x-axis is shifted towards negative infinity. Furthermore,
when the ū integration is carried out first, this cut stretches to minus real infinity, so that the
contour Cx must be deformed to minus negative real infinity as well. This additional cut is an
essential issue when one attempts to apply the analytic structure of Eq. (7) for a calculation of
the Borel sum to the expansion of complex-valued (non-Euclidean) Adler function of Eq. (3),
i.e. when discussing its form without the contour integration (see Refs. [15, 16] for such an
analysis). The analytic form of the CIPT Borel representation implies that this Borel sum has

a cut along the Euclidean axis that is power-suppressed by a factor e−
p

a(−x) ∼ (
Λ2

QCD
−s )

p. Since
this cut is unphysical, one must conclude that the associated OPE corrections to the Adler
function (which does not have such a cut at the hadron level) cannot have the standard form
discussed in Sec. 3. This implies that the OPE corrections that need to be added to the CIPT
spectral function moments differ from those of the FOPT moments and, furthermore, cannot
be computed from the standard form of the Adler function’s OPE corrections. We note that
this conclusion is not imperative at this point since the contour integration is an integral part
in the derivation of the form of Eq. (7), but we believe that it is the correct one.4

5.2 FOPT and CIPT OPE Corrections are indeed different

The statement that the OPE corrections to the CIPT spectral function moments differ from
those of the moments computed with FOPT and, furthermore, do not have standard form

4The unphysical cut may be taken as a formal reason to dismiss the form of Eq. (7) and all its implications.
However, because the cut is power suppressed, it can be compensated by OPE corrections that do not have standard
form or maybe even have a connection to duality violating effects. So there is no contradiction. We believe that
there is sufficient evidence that supports the view that the Borel representation of Eq. (7) should be taken seriously.
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is quite intriguing and not easy to accept. It implies that phenomenological analyses within
the CIPT approach may be subject to a yet unquantified additional uncertainty concerning the
treatment of the OPE corrections.5 It is therefore worth to spend some time to discuss it further
having in mind the statement we made earlier on the suppression of the gluon condensate
renormalon for spectral function moments W (x) without a quadratic term x2. In the large-β0
approximation, where the gluon condensate renormalon structure in B[D̂](u) has the form

1
2−u , it is straightforward to see this suppression when carrying out the x contour integration
for the FOPT Borel representation for this renormalon structure [29]:

δ
(0),FOPT
{(−x)m,2,1},Borel(s0) = PV

∫∞
0 du 1

2−u
1

2πi

�
|x |=1

dx
x (−x)m e−u ln(−x) e−

u
a0 (12)

= PV
∫∞

0 du (−1)m sin(uπ)
π(u−m)

1
2−u e−

u
a0 .

For m 6= 2 the renormalon pole at u = 2 cancels precisely, the Borel function for the FOPT
moment becomes analytic in the entire u-plane and the PV prescription can be dropped. This
cancellation is accompanied by two more facts, namely that (i) the associated FOPT series is
convergent (see the red dots in the right panel of Fig. 1 for W (x) = 1) and that (ii) the gluon
condensate correction (4) vanishes in the x-contour integration since the residue is zero. The
associated CIPT series (blue dots), however, is not convergent.6 The CIPT Borel representation
for W (x) = 1 that arises from carrying out the x contour integration has the form

δ
(0),CIPT
{1,2,1},Borel(s0) =

∫∞
0 dū

�

−1
2a0

�

Q
�

1,0, 2−ū
2a0

�

e−
ū

a0 , (13)

with Q(1,0,ρ) = i
2π [ln(ρ+ iπ)− ln(ρ− iπ)]. The ū-integral along the positive real axis does

again not need a prescription, but the Borel function has cuts located parallel to the real ū axis
starting at distance 2|1 + ia0π| to the origin. These cuts signal that the underlying series is
not convergent as can be clearly seen in the figure. For a renormalon cut 1

(p−u)γ the distance
is p|1+ ia0π|, see Refs. [15, 16] for details and formulae for all cases. The non-convergence
of the CIPT series and the uncancelled cuts, imply that (in the large-β0 approximation) that
the CIPT series requires a finite OPE correction. Since the standard gluon condensate OPE
corrections vanishes, the required OPE corrections cannot have the standard form of Eq. (4).

5.3 Asymptotic Separation

In the right panel of Fig. 1 also the FOPT and CIPT Borel sums for the series associated to the
Borel function contribution 1

2−u for W (x) = 1 are shown as the colored horizontal lines. They
can be computed directly from Eqs. (12) and (13). The difference between the two is called
asymptotic separation and clearly visible. The FOPT series clearly converges to its Borel sum,
while the CIPT series approaches its Borel sum at intermediate order prior to divergence. In
general, it is more convenient to calculate the asymptotic separation by doing first the Borel
integration, applying the argumentation concerning closing the paths 1a and 1b with path 2
with respect to the IR renormalon cut we have mentioned at the end of Sec. 4. This leads to

∆(m, p,γ, s0) ≡ δ
(0),CIPT
{(−x)m,p,γ},Borel(s0) − δ

(0),FOPT
{(−x)m,p,γ},Borel(s0)

= 1
2Γ (γ)

�
Cx

dx
x (−x)m sig[Im[x]] (a(−x))1−γ e−

p
a(−x) (14)

for the asymptotic separation for the generic renormalon structure BIR
D̂,p,γ
(u). For m < p,

which covers all linear weight functions,7 the asymptotic separation ∆ can be computed in
5The size of this uncertainty is only sizeable if the normalization of the gluon condensate renormalon in full

QCD is sizeable as well.
6It is intriguing that this fact has apparently never been noticed in the literature prior to our work.
7We recall that B[D̂](u) only contain non-analytic renormalon terms of the form 1

(p−u)γ for p = 2,3, 4 . . ..
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Figure 2: Left: FOPT and CIPT spectral function moment series associated to the weight
function W (x) = (−x)4 and the Borel function 1

2−u in the large-β0 approximation for s0 = m2
τ.

Right: FOPT and CIPT Moment series δ(0),FOPT
Wτ

(m2
τ) for the total hadronic τ decay rate Rτ

in the large-β0 approximation. Horizontal lines represent the FOPT and CIPT Borel sums
and the orange band in the right panel shows the FOPT Borel sum ambiguity. We used
αs(m2

τ) = 0.34 and µ2 = m2
τ.

the prescribed way, but for m > p, the exponentially suppressed term e−
p

a(−x) is beaten by
the divergent (−x)m term when x approaches −∞ in the remaining contour integral. For this
case one needs to determine∆ through analytic continuation, which boils down to the analytic
formula determined for m< p. Details of this analytic continuation are given in Ref. [15]. For
m = p, we define by hand ∆(p, p,γ, s0) = 0, because in this case the renormalon behavior is
not suppressed in the moment series and the FOPT and CIPT series both exhibit an unstable
and divergent character [15, 20] such that the discussion of a discrepancy between them is
irrelevant from the purely practical point of view. In the large-β0 approximation the analytic

formulae are quite simple and read (e−
p

a0 = (
Λ2

QCD
s0
)p)

∆β0
(m 6= p, p, 1, s0) =

(−1)p−m

p−m e−
p

a0 , (15)

∆β0
(m 6= p, p, 2, s0) = (−1)p−m

�

1
(p−m)2 +

1
(p−m)a0

�

e−
p

a0 . (16)

The analytic expressions in full QCD are more complicated and written down in Ref. [15].

5.4 Brief numerical Analysis

We have already shown in the right panel of Fig. 1 that the asymptotic separation describes the
disparity in the behavior of FOPT and CIPT spectral function moments series very accurately for
W (x) = 1 and a p = 2 simple pole IR renormalon in the large-β0 approximation. The left panel
of Fig. 2 shows the corresponding case for W (x) = (−x)4, where the analytic continuation is
mandatory to obtain the result for the asymptotic separation. Here the FOPT series is again
convergent (in contrast to the CIPT series), and the description of the disparity in the behavior
of both series is again very accurately described by the asymptotic separation. This excellent
description can be easily checked for any IR renormalon and any monomial weight function
W (x) = (−x)m also in full QCD and we refer to Ref. [15] for details.

We conclude with showing in the right panel of Fig. 2 the FOPT and CIPT series for the
normalized total hadronic τ decay rate Rτ, where the weight function Wτ(x) is a linear com-
bination of several monomials (see text below Eq. (2)) using the full Borel function B[D̂](u)
in the large-β0 approximation [28], see e.g. Eq. (12) in Ref. [16] for the expression. Since
in the full Borel function IR and UV renormalon poles are located at all integer values along
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the real u-axis (except for u = 0,1), the FOPT and the CIPT series are both asymptotic (and
non-convergent). Both series are shown for the same αs value. The oscillating structures
visible in both series arise from the influence of UV renormalons which are associated to a
sign-alternating increase of the series coefficients. The impact of these UV renormalons is,
however, very small at intermediate orders below 9 so that we can observe the impact of the
IR renormalons.8 We can clearly see the disparity between the FOPT and CIPT series (around
orders 5 to 8), which is the reason why αs values based on CIPT analyses tend to be larger
than for FOPT-based analyses (once the same OPE corrections are used in both approaches).
The FOPT and CIPT Borel sums are again indicated by the colored horizontal lines and we
have also displayed as the light orange band the standard estimate for the ambiguity of the
FOPT Borel sum in the PV prescription, which is defined as the difference from using paths
1a and 1b in Fig. 1 (left panel) times a factor 1

π . We again see that the asymptotic separation
describes the disparity between the FOPT and CIPT series very well, and we also observe that
the asymptotic separation is substantially larger than the FOPT Borel sum ambiguity (even if
we would not include the ad hoc suppression factor 1

π). Interestingly, 99.8% of the numer-
ical value of the asymptotic separation comes from the gluon condensate renormalon. This
happens because the Borel function B[D̂](u) of the Euclidean Adler function in the large-β0
approximation contains a gluon condensate IR renormalon cut with a sizeable normalization
and because the contribution of IR renormalons with p ≥ 3 is strongly power-suppressed by
additional factors of Λ2

QCD/s0, see Eq. (15). From a practical point of view, only the p = 2
gluon condensate renormalon is relevant when considering the implications of the asymptotic
separation.

6 Conclusions

In this talk we have shown that the Borel representations of the FOPT and CIPT τ hadronic
spectral function moments have different Borel representations. The CIPT Borel representa-
tion is new and has novel and subtle features. In the presence of IR renormalons the different
analytic properties lead to a difference in their Borel sums, called the asymptotic separation.
While the FOPT Borel representation has been known before, the CIPT Borel representation is
new and its structure provides the implication that the OPE corrections that need to be added
to the CIPT moments differ from those of the FOPT approach and do furthermore not have
standard form. From a numerical point of view, the asymptotic separation and its implications
are practially relevant only if the gluon condensate IR renormalon has a substantial normaliza-
tion. This is so in the large-β0 approximation, where the asymptotic separation nicely describes
the disparity between the FOPT and CIPT spectral function moment series.
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scheme the normalization of these UV renormalons is strongly suppressed compared to the IR renormalons.
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