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A pitfall in applying non-anticommuting γ5

in qq→ ZH amplitudes
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Abstract

In computing the two-loop QCD corrections to a class of Feynman diagrams for the pro-
cess qq → ZH in Higgs effective field theory, we discover a striking phenomenon. We
find the need for an additional local composite operator in the renormalised Lagrangian
while employing a non-anticommuting γ5 in dimensional regularisation. The computa-
tion using anticommuting γ5, however, does not require any such amendment.
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1 Introduction

In exploration of the discovered scalar resonance at the Large Hadron Collider, the VH events
play an important role. The recent event of the direct observation [1, 2] of the Higgs boson
decay to a pair of bottom quarks gets its primary contribution from the VH channel. Owing to
its high phenomenological importance, there has been a lot of computations aiming to make
the theoretical predictions more precise [3–12]. In this article, we compute the two-loop QCD
corrections to the production of the scalar Higgs boson in association with the neutral massive
vector boson through quark annihilation in Higgs effective field theory. Through this compu-
tation, we discover a striking phenomenon. Employing non-anticommuting γ5 in dimensional
regularisation fails to generate the amplitude fulfilling the expected chiral invariance and Ward
identity. The restoration of these essential properties demands amendment of a four-point local
composite operator to the renormalised Lagrangian. On the other hand, applying anticommut-
ing γ5 gives rise to expected results satisfying these criteria.

In the Higgs effective field theory (HEFT), where the top quark loop is integrated out by
treating its mass (mt) infinitely large, the interacting Lagrangian density relevant for the single
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scalar Higgs boson production reads as

Lheff = −
1
4

ct CH
H
v

Ga
µνGa,µν , (1)

where Ga
µν, H, v and CH denote the gluon field strength tensor, scalar Higgs boson, vacuum

expectation value of the Higgs field and Wilson coefficient, respectively. We are interested
in the massless QCD corrections to third order to the production of a massive neutral vector
boson, Z , and the H through quark annihilation within the HEFT, i.e.

q(p1) + q(p2)→ Z(q1) +H(q2) , (2)

where q(q) denotes a quark (anti-quark). The four-momenta appearing inside the parentheses
satisfy the on-shell conditions p2

1 = p2
2 = 0 and q2

1 = m2
Z , q2

2 = m2
H with mZ and mH being the

mass of Z and H boson, respectively.
In the original theory, the two-loop corrections proportional to top-Higgs Yukawa coupling

λt can be classified into two categories: class-I and class-II, depending on whether the Z bo-
son couples to the external light or the top quark loop, giving rise to different electroweak
coupling factors. In (1), the presence of a dimensionless parameter ct with unit value signifies
that we are restricting ourselves to the class-I within HEFT, as shown in figure 1. In ref. [4],

Figure 1: Sample diagrams at the leading order in HEFT. The external curly and
dotted lines respectively denote the Z and H-bosons.

it was demonstrated through heavy-mass expansion to class-I, that the leading term in 1/mt
does not involve the effective vertex qqZH or qqH. Consequently, the leading approximation
can equivalently be captured through the aforementioned effective Lagrangian (1) where H
couples to only gluons. Through this article, we will discover that the validity of this statement
depends on how we regularise the axial current, depending on whether we adopt an anticom-
muting or non-anticommuting γ5, the statement holds true or fails, respectively. We start by
computing the quantum loop corrections to this process using anticommuting γ5 in the next
section.

2 Form factors employing anticommuting γ5

The amplitude A can be decomposed into vector (Avec) and axial (Aaxi) parts as

A= ct gV,q v̄(p2)Γ
µ
vec u(p1)ε

∗
µ(q1) + ct v̄(p2)Γ

µ
axi u(p1)ε

∗
µ(q1)≡ ct gV,q Avec + ct Aaxi , (3)

where we have factored out the vector coupling gV,q between the Z boson and light quark.
The polarisation vector of the Z boson is denoted by εµ. By performing the Lorentz covariance
decomposition of Avec in terms of linearly independent and complete Lorentz structures in
D(= 4− 2ε)-dimensions as

Aµvec = v̄(p2)
�

F1,vec /q1pµ1 +F2,vec /q1pµ2 +F3,vec /q1qµ1 +F4,vecγ
µ
�

u(p1) . (4)
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While performing the decomposition, we make sure the chirality is conserved along the mass-
less quark line. From the tensorial structures present in (4), we can construct a set of four
projectors in D-dimensions which can subsequently be applied on the set of Feynman diagrams
to compute the form factors (FF) Fi,vec order by order in perturbation theory.

Figure 2: Sample non-singlet (first two) and singlet (last two) diagrams at the next-
to-leading order in HEFT

The axial part of the amplitude can further be categorised into non-singlet (Aaxi(ns)) and
singlet (Aaxi(s)) components as

Aaxi = gA,q Aaxi(ns) + gA,b Aaxi(s) . (5)

Through figures 1 and 2, we show some sample Feynman diagrams at one- and two-loop.
The singlet diagrams, featuring a closed fermionic triangle loop and exhibiting anomalous
behaviour, start appearing from two-loop. By performing a Lorentz covariant decomposition
of the axial part, we get

Aµaxi ≡ v̄(p2)
�

F1,axi /q1pµ1 +F2,axi /q1pµ2 +F3,axi /q1qµ1 +F4,axiγ
µ
�

γ5u(p1) . (6)

The computation of the non-anomalous part Aaxi(ns), which gets translated to the computa-
tions of Fi,axi(ns), is performed using anticommuting γAC

5 in D-dimensions. Due to the presence
of axial anomaly, we calculate the Fi,axi(s) adopting non-anticommuting γ5 which we discuss
in the next section. By performing the strong coupling constant and operator renormalisa-
tion of (1), we arrive at the ultraviolet (UV) finite set of FF to two loops which are found to
contain the soft and collinear (IR) divergences, as predicted through the universal subtraction
operators [13]. Moreover, we find that the finite remainders (ε→ 0) of the FF satisfy

F (l)i,axi(ns) = F (l)i,vec , i = 1, 2,3, 4 , l = 1,2 , (7)

with

Fi,va =
∞
∑

l=1

a(l+1)
s (µR)F

(l)
i,va , va = vec, axi(ns) . (8)

as(µR) ≡ αs(µR)/(4π) is the strong coupling constant at the renormalisation scale µR. The
identity in (7) is a reflection of the expected chiral invariance. Our method of computation is
presented in refs. [12,14]. We discuss the computation by employing the non-anticommuting
γ5 in the following section where we encounter a technical pitfall starting from the leading
order (LO) itself.

3 Form factors employing non-anticommuting γ5 in HEFT

The non-anticommuting (NAC) γ5 can be defined in terms of Dirac’s γµ matrix in dimensional
regularisation as [15,16]

γ5 = −
i

4!
εµνρσγ

µγνγργσ , (9)
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where the Lorentz indices of the Levi-civita symbol εµνρσ are treated in D dimensions [17].
Owing to the usage of this definition, UV renormalisation requires an additional treatment [18]
to ensure the restoration of the appropriate Ward identity. However, while verifying the ex-
pected Ward identity, we discover a striking phenomenon. Although the finite remainders
(ε→ 0) of the LO vector form factors are identical to the corresponding quantities obtained
using AC γ5, the axial ones are not. In particular, we find that

F (1),NAC
i,axi(ns) = F (1)i,vec , i = 1,2, 3,

F (1),NAC
4,axi(ns) 6= F (1)4,vec . (10)

Throughout this article, we append AC and NAC for denoting the respective γ5 scheme. The
above inequality implies the violation of the Ward identity even at the LO level

q1,µA
µ,NAC
axi(ns) 6= 0 . (11)

The restoration of the Ward identity, which is a necessity, demands an amendment term of the
form

J µ,NAC ≡ Zh
5(as)C

�

v̄(p2) [γ
µγ5]L u(p1)

�

. (12)

The constant factor C≡ as (−4CF )CH/v collects the overall a2
s of the LO amplitude and [γµγ5]L

implies the axial vector current is renormalised according to Larin’s scheme [17,18]. Of course,
this renormalisation starts playing a role from the next-to-LO (NLO). The additional renormal-

Figure 3: The amendment vertex to the Lagrangian for using NAC in HEFT

isation constant Zh
5(as) = 1+O(as) that is introduced in the amendment term must be deter-

mined order by order in perturbation theory. In the upcoming subsection, we demonstrate this
at the NLO. This amendment term can be visualised as a four-point local composite operator
as shown in figure 3. With this extra term, we restore the desired properties: F (1),NAC

i,axi(ns) = F (1)i,vec

holds for all four FF and consequently q1,µA
µ,NAC
axi(ns) = 0 is also fulfilled at the LO.

The discrepancy is found to arise solely from the box diagram in figure 1. Although each
of the diagrams at the LO is individually finite, the box consists of separately diverging terms.
Usage of the NAC and AC schemes of γ5 gives rise to different D dependent coefficients of
these diverging terms, which results in some non-vanishing evanescent anti-commutators upon
shifting the non-anticommutating γ5 from inside the loop to the outside. This leads to the
observed discrepancy.

3.1 UV Renormalisation of non-anomalous diagrams at the NLO

At the NLO, we have non-singlet (non-anomalous) as well as singlet (anomalous) set of dia-
grams, as shown in figure 2. From our experience with the LO, it is quite expected that the
phenomenon shows up even at the NLO. For non-anomalous diagrams, the normal form of the
Ward identity should hold for the axial current, exactly same as the vector counterpart. We
find that the axial form factors renormalised according to Larin’s prescription [17,18] exhibit
the following behaviours:
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1. the IR pole structure, in particular, the single pole in ε, differs from the universal pre-
diction [13],

2. the O(ε0) term obtained after IR subtraction fails to satisfy the Ward identity.

These shortcomings can be cured by incorporating the quantum loop corrections to the amend-
ment vertex (12). By demanding the restoration of the aforementioned properties, we get

Zh
5,ns(as) = 1 + as

�−β0

ε
+

107
18

CA− 7CF −
1
9

n f

�

+ O(a2
s ) , (13)

where β0 = 11CA/3− 2n f /3 is the leading coefficient of the QCD β-function, CA and CF are
respectively the quadratic Casimirs in adjoint and fundamental representations, n f is the num-
ber of active light quark flavours. To summarise, the renormalised non-singlet axial amplitude
Aaxi(ns) in HEFT employing NAC γ5 is given by

Aµ,NAC
axi(ns)(as) = Zns

5,L(as)Z
ns
A,L(as)ZH(as)Â

µ,NAC
axi(ns)(âs) + J µ,NAC

ns (14)

with the counterterm involving the amendment

J µ,NAC
ns = Zh

5,ns(as)C
�

v̄(p2) [γ
µγ5]L u(p1)

�

= Zh
5,ns(as)Z

ns
5,L(as)Z

ns
A,L(as)C

�

v̄(p2)γ
µγ5 u(p1)

�

. (15)

The renormalisation constants for the non-singlet axial currents in Larin scheme are encoded
through Zns

A,L and Zns
5,L [18]. We denote the operator renormalisation for (1) by ZH . The symbol

hat(ˆ) is used to indicate the bare amplitude that we get directly from Feynman diagrams. If
we choose not to invoke the Larin counterterms in (15), we could only determine the product
Zh,T

5,ns(as)≡ Zh
5,ns(as)Zns

5,L(as)Zns
A,L(as) as a whole.

3.2 UV Renormalisation of anomalous diagrams

Treatment of the singlet diagrams, as shown in figure 2, is trickier owing to the presence of
ABJ anomaly [19, 20]. The only nonzero contribution in singlet diagrams comes from the
massless b-quark loop in n f = 5 flavour HEFT, that involves the coupling factor gA,bct . Other
generations of quarks do not contribute due to the mass degeneracy. The ABJ anomaly of the
massless axial vector b-quark current J5µ = b̄γµγ5 b at the operator level reads as

�

∂ µJ5µ

�

R
= as

1
2

�

GG̃
�

R
, (16)

where GG̃ = −εµνρσGa
µνGa

ρσ. We put the subscript R to signify the relation holds for renor-
malised operators [18,21]. The divergence of J5µ gets translated to the replacement ε∗µ→ q1,µ.
At the matrix element level in momentum space, we get

Aµaxi(s)q1,µ =
as

2




H(q2)
�

�

�

GG̃(0)
�

R

�

�q(p1)q(p2)
�

(17)

obeying the kinematic relation p1+ p2− q2 = q1. The above Green’s function has an insertion
of the composite operator

�

GG̃(0)
�

R with momentum qµ1 . Note that, the l.h.s. as well as the
r.h.s. is individually finite. By computing the r.h.s. in perturbation theory, for which some
diagrams are shown in figure 4, we find that the relation (17) fails to hold true. In view of our
treatment for non-anomalous diagrams at the NLO, we introduce the local composite operator

J µ,NAC
s = Zh

5,s(as)C
�

v̄(p2) [γ
µγ5]L u(p1)

�

(18)
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Figure 4: Diagrams contributing to the right-hand side of (17). The blobs denote the
effective vertex.

with a new undetermined renormalisation constant Zh
5,s(as). By demanding the finite anomaly

and restoration of the anomalous Ward identity (16) or (17), we obtain

Zh
5,s(as) = 1 + as

�

−
3
2

1
ε
−

3
4

�

+ O(a2
s ) . (19)

In the process of renormalising the matrix elements on the r.h.s. of (17), we require the
following mixed counterterm

Zh
GJ (as)

�

v̄(p2)γµγ5 u(p1)q
µ
1

�

(20)

where Zh
GJ (as) = as

�24
ε CF

�

+O(a2
s ) is determined to minimally subtract all the poles in figure 4.

To summarise, the renormalised effective Lagrangian with a non-anticommuting γ5 for
computing the class-I diagrams of qq̄→ ZH in HEFT reads as

LR =
�

Lc +Lheff

�

R
+κ Zh

5(as)C
�

q̄R(x) [γ
µγ5]L qR(x)

�

Zµ(x)H(x) , (21)

where κns = ct gA,q and κs = ct gA,b. The first term is the renormalised Lagrangian without the
new amendment, as captured through the second term. The latter does not arise while com-
puting the QCD corrections to non-anomalous set of diagrams employing the anticommuting
γ5 scheme.

3.3 Form factors in exact theory without heavy-top limit

To make our understanding more concrete, we intend to examine whether the need of the
additional local composite operator persists in the full theory with n f = 6 while using non-
anticommuting γ5. We have 6 Feynman diagrams at two-loop with a finite top mass, with

Figure 5: Sample diagrams of the two-loop class-I which are proportional to λt . The
thick solid lines denote the massive top quark.

samples shown in figure 5. We generate the integrand using GoSam [22, 23] and apply the
integration-by-parts [24, 25] relations employing Kira [26] to express the bare amplitude in
terms of 55 master integrals. Using pySecdec [27], we evaluate the integrals numerically at
one chosen kinematic point as this is sufficient for our purpose. We find that the vector and
axial form factors of the two-loop class-I diagrams indeed are identical to each other without
the need of any amendment to the Lagrangian. In particular, the 4-th vector and axial FF
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agree to the fourth significant digit. Therefore, although we need to introduce an effective
four-point vertex in HEFT while working with a non-anticommuting γ5, we do not need to do
so in the exact theory with n f = 6.

4 Conclusion

Our exploration with the class-I diagrams in HEFT (n f = 5) shows that the correct results obey-
ing the chiral invariance as well as the appropriate Ward identity can be obtained for the vector
and non-anomalous axial amplitude with anticommuting γ5. However, for non-anticommuting
γ5, we need an additional four-point effective vertex qγµγ5q̄ZµH. In the exact theory with
n f = 6 flavours, we do not need any additional composite operator of this kind despite us-
ing non-anticommuting γ5. This observation strengthens the common lore that a conclusion
obtained employing anticommuting γ5 does not necessarily holds for non-anticommuting γ5
in dimensional regularisation. For which class of processes the need of this kind of effective
operator arises is an interesting arena that we intend to explore in months.
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