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Abstract

We develop a new classical action that in addition to MHV vertices contains also NkMHV
vertices, where 1≤ k ≤ n−4 with n the number of external legs. The lowest order vertex
is the four-point MHV vertex – there is no three point vertex and thus the amplitude
calculation involves fewer vertices than in the CSW method. The action is obtained by
a canonical transformation of the Yang-Mills action in the light-cone gauge, where the
field transformations are based on Wilson line functionals.
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1 Introduction

The following work focuses on a description of pure gluonic scattering amplitudes in terms
of a new action, currently developed at the classical level (thus suitable for tree amplitudes).
Despite considered as fundamental, gluon fields are often not the most efficient degrees of free-
dom for computing amplitudes. Interestingly, in [1], the Maximally Helicity Violating (MHV)
vertices used in the Cachazo-Svrcek-Witten (CSW) method [2] were found to be associated
with straight infinite Wilson lines on certain complex plane (self-dual plane). These Wilson
lines emerge upon transforming the positive helicity field in the light cone Yang-Mills action,
to a new action (often called as the ’MHV action’) where the MHV vertices are explicit [3–6].
A similar Wilson line-type structure was found in [7] for the negative helicity field. Moreover
in the latter, we suggested that such Wilson lines should be a part of a larger structure that
extends beyond the self-dual plane.

Indeed, in [8], we derived a new classical action for gluodynamics in which the fields are
connected to Wilson line functionals spreading over the anti-self dual and self-dual planes.
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This new action can be directly derived from the Yang-Mills action. However, the easiest
way is to start with the MHV action and canonically transform the anti-self-dual part. This
transformation removes the triple gluon vertex in the MHV action as a result of which the new
action does not have any triple-gluon vertices at all. These triple-gluon vertices are basically
resummed inside the Wilson lines. Thus, starting from the four-point MHV vertex, the vertices
in the new action consist of MHV, MHV and other helicity configurations. This reduced the
number of diagrams required to calculate amplitudes. We explicitly calculated amplitudes up
to 8 external gluons using this new action and found agreement with standard results.

2 MHV Lagrangian

The starting point is the full Yang-Mills action on the constant light-cone time x+ in the light-
cone gauge Â+ = 0. We denote Â = Aa ta, here ta are color generators in the fundamental
representation satisfying

�

ta, t b
�

= i
p

2 f abc t c and Tr(ta t b) = δab. Integrating out the Â−

fields (appearing quadratically), leaves only two complex fields Â•, Â? that correspond to plus-
helicity and minus-helicity gluon fields. We use the so-called ’double-null’ coordinates defined
as v+ = v · η, v− = v · η̃, v• = v · ε+⊥, v? = v · ε−⊥ with the two light-like basis four-vectors
η = (1, 0,0,−1)/

p
2, η̃ = (1,0, 0,1)/

p
2, and two space like complex four-vectors spanning

the transverse plane ε±⊥ =
1p
2
(0, 1,±i, 0). The Yang-Mills action in this setup reads

S(LC)
Y−M [A

•, A?] =

∫

d x+
∫

d3x

�

− Tr Â•�Â? − 2i g Tr∂ −1
− ∂•Â

• �∂−Â?, Â•
�

− 2i g Tr∂ −1
− ∂?Â

?
�

∂−Â•, Â?
�

− 2g2 Tr
�

∂−Â•, Â?
�

∂ −2
−

�

∂−Â?, Â•
�

�

, (1)

where � = 2(∂+∂− − ∂•∂?). Thus, we see there are (+ +−), (−−+) and (+ +−−) vertices.
Above, the bold position vector is defined as x≡

�

x−, x•, x?
�

.
The MHV action [3], implementing the CSW rules [2] is obtained from the Yang-Mills

action Eq. (1) by canonically transforming the fields to a new pair (B̂•, B̂?) with a constraint
that the kinetic term and (+ +−) vertex in Eq. (1) is mapped to the kinetic term in the new
action:

Tr Â•�Â? + 2i g Tr∂ −1
− ∂•Â

• �∂−Â?, Â•
�

−→ Tr B̂•�B̂? . (2)

Solving the above transformation for Â•, Â? and substituting it in Eq. (1) results in the MHV
action consisting of an infinite set of MHV vertices

S(LC)
Y−M [B

•, B?] =

∫

d x+
�

−
∫

d3xTr B̂•�B̂? +L(LC)
−−+ + · · ·+L(LC)

−−+ ...+ + . . .

�

, (3)

where L(LC)
−−+ ...+ represents a generic n-point MHV vertex in the action, which in our conven-

tions has the following form in the momentum space

L(LC)
−−+ ...+ =

∫

d3p1 . . . d3pnδ
3 (p1 + · · ·+ pn) eV b1...bn

−−+ ...+ (p1, . . . ,pn)

eB?b1

�

x+;p1

�

eB?b2

�

x+;p2

�

eB•b3

�

x+;p3

�

. . . eB•bn

�

x+;pn

�

, (4)

with

eV b1...bn
−−+ ...+ (p1, . . . ,pn) =

∑

Tr
�

t b1 . . . t bn
� (−g)n−2

(n− 2)!

�

p+1
p+2

�2
ev∗421

ev∗1nev
∗
n(n−1)ev

∗
(n−1)(n−2) . . .ev∗21

, (5)
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where the sum is over noncyclic permutations. Above, we introduced spinor-like variables

ṽi j = p+i

�

p?j
p+j
−

p?i
p+i

�

, ṽ∗i j = p+i

�

p•j
p+j
−

p•i
p+i

�

. (6)

The ṽi j , ṽ∗i j symbols are directly proportional to the spinor products 〈i j〉 and [i j].

3 Wilson lines in MHV Lagrangian

In the original work [3], the MHV action was obtained using only analytic properties of the
transformations and the S-matrix equivalence theorem. The momentum space solutions for Â•

and Â? fields were explicitly found in [4]. The Wilson line interpretation of the new fields in
the MHV action was first discussed in [1] where the plus helicity field, B•a[Â

•](x), was shown
to be the straight infinite Wilson line B•a[A

•](x) =Wa
(+)[A](x), where for a generic vector field

Kµ we defined

Wa
(±)[K](x) =

∫ ∞

−∞
dαTr

�

1
2πg

ta∂− Pexp

�

i g

∫ ∞

−∞
ds ε±α · K̂

�

x + sε±α
�

��

, (7)

with ε±µα = ε±µ⊥ − αη
µ . Notice, that the latter four vector resembles the gluon polarization

vector. Considering α = p · ε±⊥/p
+, it in fact is the transverse polarization of a gluon carrying

momentum p. Thus, in momentum space the Wilson line B•a[Â
•](x) lies along the plus helicity

polarization vector. Interestingly, the two vectors defining the direction of the Wilson line, ε+⊥
and η, span the so-called self-dual plane (the plane on which the tensors are self-dual). Note,
however, that the Wilson line is integrated over all possible directions α on the self-dual plane
gaining thus a projective character (see Fig. 1a).

The minus helicity field B?a[Â
•, Â?](x), on the other hand, was shown in [7] to be a similar

Wilson line, but with an insertion of the minus helicty gluon field at certain point on the line
(see Fig. 1b), more precisely

B?a[A
•, A?](x) =

∫

d3y

�

∂ 2
−(y)

∂ 2
−(x)

δWa
(+)[A](x

+;x)

δA•c(x+;y)

�

A?c(x
+;y) , (8)

where ∂−(x) = ∂ /∂ x−. Because it is natural to think of the A? fields as associated to Wilson
lines that live in the anti-self-dual plane spanned by ε−α and η (while the B• is on the self-dual
plane), we conjectured that the solution (8) should just be a cut through a larger structure
that spans both the planes.

4 New classical action

The canonical transformation, Eq. (2), eliminates one of the triple gloun vertex (++−) while
the other triple gloun vertex (+−−) still exists in the MHV action. Triple point vertices are not
very effective building blocks for calculating amplitudes, and, actually they are not physical
amplitudes themselves – in the on-shell limit they are zero (for real momenta). Motivated by
the geometric considerations mentioned before and the above arguments we proposed in [8]
another set of field transformations that lead to a new action.
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Figure 1: Left: The straight infinite Wilson line B• living on the self-dual plane
spanned by ε+α = ε

+
⊥ − αη and integrated over all α (the dashed, tilted Wilson lines

represent the change of α). Right: The B? field can bee seen as the straight infinite
Wilson line similar to the one on the left, but here one A• field has been substituted
by the A? field in the expansion (with a suitable symmetry factor). (Source of the
figure: Ref. [7].)

4.1 Field Transformation

The new canonical field transformations are based on path ordered exponentials of the gauge
fields, spreading over the self-dual and anti-self-dual planes [8]:

�

Â•, Â?
	

→
¦

Ẑ•
�

A•, A?
�

, Ẑ?
�

A•, A?
�

©

. (9)

It maps the kinetic term and both the triple-gluon vertices of the Yang-Mills action to a free
term in the new action. In order to preserve the functional measure in the partition function,
up to a field independent factor, it is necessary that the transformation is canonical. Despite
the complexity of the transformation (9), we found that the generating functional G[A•, Z?]
for the transformation has the following simple form:

G[A•, Z?](x+) = −
∫

d3x TrŴ −1
(−)[Z](x) ∂−Ŵ(+)[A](x) . (10)

The Yang-Mills and the new fields are related as:

∂−A?a(x
+,y) =

δG[A•, Z?](x+)
δA•a (x+,y)

, ∂−Z•a(x
+,y) = −

δG[A•, Z?](x+)
δZ?a (x+,y)

. (11)

In [8] we demonstrated that the transformation (10) is identical to two consecutive canonical
transformations: first, mapping the self-dual component in the Yang-Mills action to the kinetic
term in the MHV action, and then mapping the anti-self-dual part of the latter to the kinetic
term in the new action

L−+[B•, B?] +L−−+[B•, B?] −→ L−+[Z•, Z?] . (12)

Following this, the solution for Z fields reads (see Fig. 2)

Z?a[B
?](x) =Wa

(−)[B](x) ,

Z•a[B
•, B?](x) =

∫

d3y

�

∂ 2
−(y)

∂ 2
−(x)

δWa
(−)[B](x

+;x)

δB?c (x+;y)

�

B•c (x
+;y) . (13)
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4.2 Structure of the action

The new action can be most easily derived [8] by substituting the inverse of Z fields (13) in
the MHV action. For the B? field we find

eB?a(x
+;P) =

∞
∑

n=1

∫

d3p1 . . . d3pn eΨ
a{b1...bn}
n (P; {p1, . . . ,pn})

n
∏

i=1

eZ?bi
(x+;pi) , (14)

with

eΨ a{b1···bn}
n (P; {p1, . . . ,pn}) = −(−g)n−1

ev(1···n)1
ev1(1···n)

δ3(p1 + · · ·+ pn − P) Tr(ta t b1 · · · t bn)
ev21ev32 · · ·evn(n−1)

. (15)

The expansion for the B• field reads

eB•a(x
+;P) =

∞
∑

n=1

∫

d3p1 . . . d3pn eΩ
ab1{b2···bn}
n (P;p1, {p2, . . . ,pn})eZ•b1

(x+;p1)
n
∏

i=2

eZ?bi
(x+;pi) ,

(16)
where

eΩ ab1{b2···bn}
n (P;p1, {p2, . . . ,pn}) = n

�

p+1
p+1···n

�2

eΨ ab1···bn
n (P;p1, . . . ,pn) . (17)

Upon substitution of the expansions (14)-(16) in the MHV action we obtain the following
generic structure of the new action:

S(LC)
Y−M [Z

•, Z?] =

∫

d x+
�

−
∫

d3xTr Ẑ•�Ẑ?

+L(LC)
−−++ +L(LC)

−−+++ +L(LC)
−−++++ + . . .

+L(LC)
−−−++ +L(LC)

−−−+++ +L(LC)
−−−++++ + . . .

...

+L(LC)
−−− ...−++ +L(LC)

−−− ...−+++ +L(LC)
−−− ...−++++ + . . .

�

. (18)

For convenience, we shall call the new action as Z-field action hereafter. It has the following
properties:

i ) There are no three point interaction vertices. This is because they have been effectively
resummed inside the Wilson lines.

ii ) No all-plus, all-minus, single-minus (−+ · · ·+) and single-plus (−· · · −+) vertices.

iii ) It includes MHV vertices, (− − + · · ·+), that in the on-shell limit give alone the corre-
sponding amplitudes.

iv ) It includes MHV vertices, (−· · · − ++), that in the on-shell limit give alone the corre-
sponding amplitudes.

v ) All vertices have an easy-to-calculate form.

Let us now discuss a general form of the vertex. Without loss of generality, we consider
all the negative helicity fields adjacent and moreover concentrate on the color ordered vertex,
defined by

U b1...bn
− ...−+ ...+ (p1, . . . ,pn) =

∑

Tr
�

t b1 . . . t bn
�

U
�

1−, . . . , m−, (m+ 1)+, . . . , n+
�

, (19)
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Figure 2: The geometric depiction of the Z? field (the structure of Z• is fairly similar).
Z? field is a Wilson line (with exactly the same analytic form as B•) of only B? fields on
anti-self-dual plane. Notice, each vertical plane is self-dual plane with B? embedded
in it as was showin in Fig. 1b. (Source of the figure: Ref. [8].)
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Figure 3: Contributions to the color-ordered (−−−++)MHV vertex. (Source of the
figure: Ref. [8].)

where m is the number of minus helicity legs. The sum is over noncyclic permutations. In a sim-
ilar fashion we define color ordered kernels for the B fields (14)-(16). Furthermore, for com-
pact expressions, we use [i, i+1, . . . , j] to denote the momentum pi(i+1)... j = pi+pi+1+· · ·+p j .
In this notation, the generic form of the color ordered vertex reads [8]:

U
�

1−, . . . , m−, (m+1)+, . . . , n+
�

=
m−2
∑

p=0

m−1
∑

q=p+1

m
∑

r=q+1

V
�

[p+1, . . . , q]−, [q+1, . . . , r]−, [r+1, . . . , m+1]+, (m+2)+, . . . , (n−1)+, [n, 1, . . . , p]+
�

Ω
�

n+, 1−, . . . , p−
�

Ψ
�

(p+1)−, . . . , q−
�

Ψ
�

(q+1)−, . . . , r−
�

Ω
�

(r+1)−, . . . , m−, (m+1)+
�

.
(20)

This can be easily understood as follows. The substitution of B fields in terms of Z fields can
only multiplicate negative helicity legs. Thus we start with MHV vertex with n − m positive
helicity legs. Also, since we have considered all negative helicity legs adjacent, the only pos-
sible contributions are the ones where the B fields is substituted to at least one of the four
adjacent (− − ++) legs in the MHV vertex. Summing over all such contribution gives (20).
This generic formula doesn’t seem to simplify any further. However, it is operational and can
be used for calculating amplitudes. We discuss this in the following.

4.3 Amplitudes

Using the Z-field action we computed several tree-level amplitudes. The MHV and MHV on-
shell amplitudes can be directly obtained from the corresponding vertices. Consider the 5-point
MHV vertex. All the contributions to the vertex (20) are shown in Fig. 3. In the on-shell limit,
the sum of these contributions collapses to the known formula:
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A(1−, 2−, 3−, 4+, 5+) = g3

�

p+4
p+5

�2
ev4

54

ev15ev54ev43ev32ev21
. (21)

For the 6-point NMHV amplitude (−−−+++) we get just three contributions shown in Fig. 4.
In the on-shell limit, the sum of these contributions reduces to the known result [9]. For 7-
point NNMHV amplitude (−−−−+++)we get just five contributions shown in Fig. 5. We also
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Figure 5: Contributions to the 7-point (−−−−+++) NNMHV amplitude. (Source
of the figure: Ref. [8].)

calculated other amplitudes, up to 8-point NNMHV, and showed they agree with the standard
methods [10]. The number of diagrams we encountered in the latter case was 13.

5 Conclusions

We developed a new action for gluodynamics by canonically transforming (Eq. (11)) the light-
cone Yang-Mills action. The most striking property of the new action is that it has no triple-
gluon vertex. Consequently, the number of diagrams needed to calculate the amplitudes is
greatly reduced. Also, the geometric structure of the field transformations leading to the new
action is incredibly rich and requires further investigation. Finally, a formulation at loop level
seems feasible [5,11–15] and is under development.
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