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The diagrammatic coaction and cuts of the double box
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Abstract

The diagrammatic coaction encodes the analytic structure of Feynman integrals by map-
ping any given Feynman diagram into a tensor product of diagrams defined by con-
tractions and cuts of the original diagram. Feynman integrals evaluate to generalized
hypergeometric functions in dimensional regularization. Establishing the coaction on
this type of functions has helped formulating and checking the diagrammatic coaction
of certain two-loop integrals. In this talk we study its application on the fully-massless
double-box diagram. We make use of differential equation techniques, which, together
with the properties of homology and cohomology theory of the resulting hypergeomet-
ric functions, allow us to formulate the coaction on a range of cuts of the double box in
closed form.
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1 Introduction

It has been proposed [1] that dimensionally regulated Feynman integrals can be endowed with
a diagrammatic coaction involving contractions and cuts of subsets of propagators. This idea
was first established in the context of one-loop Feynman integrals [2]. As one-loop Feynman
integrals are always expressible in terms of multiple polylogarithms (MPLs) [3], the diagram-
matic coaction could be formulated and checked order by order in the dimensional regulator
ε, using the established coaction on the MPLs [4].

The hope is, however, that this algebraic structure extends to all Feynman integrals. A
further step in this direction was facilitated by the formulation of a coaction on generalized
hypergeometric functions, which are expandable order by order in ε.

It has been shown [5], [6], that the "local coaction" which applies to the MPLs appearing
in the Laurent expansion of hypergeometric functions, such as those obtained upon evaluating
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Feynman integrals in dimensional regularization, is compatible with the "global coaction" on
these integrals. The global coaction is defined using the integral representation of hypergeo-
metric functions for fixed ε, without reference to their expansion. This formulation has been
recently used [6] to generalize the diagrammatic coaction beyond one loop, and explicitly
construct the coaction for a variety of two-loop Feynman-integral topologies [7].

In the present talk we report on further progress in applying the diagrammatic coaction at
two loops, by considering the on-shell double box topology. The choice of topology is motivated
by the fact that the double box has a higher number of propagators than those of the previ-
ously considered examples, which, when contracted, result in a higher variety of subtopologies
which appear in the diagrammatic coaction.

This double-box integral is not yet known in a closed form in ε, but we nevertheless are able
to compute its cuts in a closed form, through differential equation techniques, and construct
the diagrammatic coaction of these cuts, thus providing further insight into the form of the
two-loop diagrammatic coaction.

2 Background

2.1 The double-box integral

The massless double box Feynman integral, as well as the integral representation of its subtopolo-
gies, can be expressed in the following form:

I (D, s, t, a, b, {ni})=
e2γE ε

�

iπ
D
2

�2

∫ +∞

−∞

dDk dD l ((k−p3)2)a((l−p1)2)b

(k2)n1 (l2)n2 ((l+k)2)n3 ((k+p1)2)
n4 ((l+p3)2)

n5 ((k+(p1+p2))2)
n6 ((l−(p1+p2))2)

n7

(1)
where D is the spacetime dimension, ε the dimensional regularization parameter, and a, b
and ni are non-negative integer-valued exponents. We may view the double box integral, as
well as any Feynman integral, as a pairing I (D, s, t, a, b, {ni}) =




γ
�

�ωa,b,{ni}
�

of an element of
a cohomology group

�

�ωa,b,{ni}
�

, the differential form being integrated, with an element of a
homology group 〈γ|, the contour of integration.

The cohomology group. In the case of the massless double box the cohomology group can
be generated by the differential form:

�

�ωa,b,{ni}

�

=
e2γE ε

�

iπ
D
2

�2

dDk ∧ dD l
�

(k− p3)2
�a �
(l − p1)2

�b

(k2)n1 (l2)n2 ((l + k)2)n3 ((k+ p1)2)
n4 ((l + p3)2)

n5 ((k+ (p1 + p2))2)
n6 ((l − (p1 + p2))2)

n7
.

(2)

The case where all ni 6= 0 corresponds to the double-box topology itself, while setting any of
the ni parameters to zero is equivalent to considering a subdiagram with the corresponding
propagator contracted. By virtue of integration-by-parts (IBP) relations, one may generate a
minimal set differential forms which spans the space of integrands associated with any partic-
ular topology. In the case of the double box this basis is eight-dimensional, consisting of six
independent master integrands, corresponding to subtopologies, and two master integrands
corresponding to the double-box top topology, for which we choose ni = 1 for all i.

The inequivalent master integrands of the top topology are generated by the numerator

insertions
�

(k− p3)2
�a

and
�

(l − p1)2
�b

. The necessity of numerator insertions is a feature
that appears at two loops and beyond, where, in contrast to the one-loop case, it is no longer
sufficient to consider subsets of the top-topology propagators with unit powers for obtaining
a master integrand basis. This consideration complicates the generalization of the coaction to
the two-loop level.
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The homology group. The homology group is generated by all the inequivalent integration
contours that prescribe the integration path for the loop momenta. The usual Feynman-integral
contour prescribes a path which takes every component of the loop momenta over the whole
range (−∞,+∞). One may modify the integration contour by allowing it to encircle any
of the poles of the propagators. By virtue of the residue theorem, this translates into placing
the encircled propagators on-shell, which is also referred to as "cutting" the propagators. Cut
Feynman diagrams are represented with the on-shell propagators featuring a cut line.

At one loop, the homology group for a particular class of diagrams is generated by all the
non-empty subsets of the propagators put on shell. Starting from two loops, a contour cannot
be characterized only by the set of propagators it encircles; there are more independent choices
of contours encircling the same set of propagators, just as there are more than one master
integrals associated with the same topology. In the case of the double box this translates to
two inequivalent maximal cuts, the same number as master integrands of the top topology.

The duality condition. For many Feynman integrals it is possible to make a basis choice for
the homology and the cohomology group generators such that the ε expansion of the period
matrix




γi

�

�ω j

�

is:



γi

�

�ω j

�

= δi j +O(ε). (3)

Equation (3) is called the duality condition. Choosing the generators such that they satisfy
the duality condition is essential for the coaction to take the form outlined in the following
section. The duality condition will also serve as a boundary condition for the cuts computed
by differential equations in section 4.

2.2 The coaction on integrals

The coaction on integrals [1] takes the general form:

∆ [〈γ|ω〉] =
∑

i

〈γ|ωi〉 ⊗ 〈γi|ω〉 . (4)

The left hand side of the equation features the coaction applied on an arbitrary integral re-
sulting from any differential form |ω〉 integrated along a contour 〈γ|. In the right hand side,
the original contour stays constant on the left entry of the tensor product, while the original
differential form stays constant on the right entry. The sum is performed over dual pairs of
basis elements, where the integrand |ωi〉 determines the left entry while its corresponding
dual contour 〈γi| the right entry.

2.3 Hypergeometric functions

A coaction based on the integral representation of the hypergeometric functions has been
constructed in [8]. The simplest hypergeometric function is the Gauss 2F1 which admits the
integral representation:

Γ (1+m+ a ε)Γ (1+ n+ b ε)
Γ (2+ n+m+ (a+ b)ε)) 2 F1(−p−c ε, 1+m+a ε; 2+n+m+(a+ b)ε); z) =

∫ 1

0

duum+a ε(1−u)n+b ε(1−u z)p+c ε

(5)

We will consider m, n and p as integers. This renders the ε expansion expressible in MPLs.
The homology and cohomology groups of the 2F1 are two-dimensional. The homology group
is generated by considering contours whose endpoints are the zeroes of two of the polynomials
appearing in the integral representation. In [8] the contours that have been chosen are:

〈γ1|= bε

∫ 1

0

, 〈γ2|= cεz

∫
1
z

0

. (6)
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The cohomology group is generated by two independent differential forms, given by:

|ω1〉= du uaε(1− u)−1+bε(1− uz)cε, |ω2〉= du uaε(1− u)bε(1− uz)−1+cε, (7)

such that they are dual to the above two contours. With these considerations the coaction of
any 2F1 function is given by:

∆

�

∫ 1

0

duum+a ε(1− u)n+b ε(1− u z)p+c ε

�

=∆ [〈γ|ω〉] = 〈γ|ω1〉 ⊗ 〈γ1|ω〉+ 〈γ|ω2〉 ⊗ 〈γ2|ω〉 . (8)

A variety of generalized hypergeometric functions and their coactions have been studied
in [6]. In this work we will make use of the 3F2 hypergeometric function, whose integral
representation is given by:

3F2 (a1, a2, a3; b1, b2; z) =
Γ (b2)

Γ (a3) Γ (b2 − a3)

∫ 1

0

ta3−1 (1− t)b2−a3−1
2F1 (a1, a2; b1; t z) . (9)

The construction of its coaction is very similar to the 2F1. Here the homology and cohomology
spaces are three-dimensional.

3 The on-shell double-box top topology

The subgroup of the cohomology group that includes the massless double box itself, without
any of its lower subtopologies, is two-dimensional. As a result, there are two independent
differential forms, and therefore two master integrands, that correspond to the double-box
top topology.

In this section, we consider the differential form that spans the top topology,
�

�ωa,b,{ni=1}
�

=
�

�ωa,b

�

, with ni = 1 for all i, and determine the values of a and b such that the duality condition
of equation (3) is realized, by computing the contours corresponding to the maximal cuts of
the two double boxes. This process will determine the two master integrals of the double box.

3.1 The maximal cuts of the double box and their coaction

Our initial goal is to calculate the maximal cuts of the double box. The maximal cuts were
first calculated in [9] through the Baikov parametrization. We instead perform the calculation
using an explicit phase-space parametrization of the cut loop momenta, as in [10]. Putting all
the propagators on-shell, the resulting function is:




γ1

�

�ωa,b

�

= fa,b 2F1 (1+ 2ε, b− ε; 1+ b− a; x) , (10)

with:

fa,b = −2e2γE ε
Γ (a− ε) Γ (−ε)
Γ (−2ε) Γ (a− 2ε)

x−2−2ε+b(1− x)ε ta+b−3−2ε (11)

and where x = − s
t , s = (p1 + p2)2 and t = (p1 + p3)2.

The contour of the 2F1 function of equation (10) corresponds to the 〈γ1| generating contour
of the 2F1 homology group (6). Using the fact that the homology group of the 2F1 function is
two-dimensional we may find a second maximal cut by restricting the integration range of the
integral definition of the 2F1 to the 〈γ2| contour of equation (6). Doing so yields:




γ2

�

�ωa,b

�

=
e2γEε Γ (a− ε) Γ (−ε) Γ (−ε+b)
Γ (−2ε) Γ (a+ b− 3ε)

ta+b−3−2εx−2−ε(1− x)ε 2F1

�

b− ε, a− ε; a+ b− 3ε;
1
x

�

(12)
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We may then expand each result in ε to deduce the values of a and b that correspond to
dual differential forms to the maximal cut contours, such that equation (3) is satisfied. The
result is:




γ1

�

�ωa=0,b=0

�

= 〈γ1|ω1〉= 1+O (ε) ,



γ1

�

�ωa=0,b=1

�

= 〈γ1|ω2〉=O(ε)



γ2

�

�ωa=0,b=0

�

= 〈γ2|ω1〉=O (ε) ,



γ2

�

�ωa=0,b=1

�

= 〈γ2|ω2〉= 1+O (ε)
(13)

This choice coincides with the integrand basis of [11] and [12], up to an overall normalization,
and results in pure functions as shown in [13].

In terms of the its diagrammatic representation, we use different colors to represent the
two master integrands:




γ
�

�ωa=0,b=0

�

= 〈γ|ω1〉=

p1 p3

p2 p4




γ
�

�ωa=0,b=1

�

= 〈γ|ω2〉=

p1

p2

p3

p4

(14)

Applying the cut contours to these master integrands, the space of the maximal-cut dia-
grams takes the form:

〈γ1|ω1〉=

p1 p3

p2 p4

〈γ1|ω2〉=

p1

p2

p3

p4

〈γ2|ω1〉=

p1 p3

p2 p4

〈γ2|ω2〉=

p1

p2

p3

p4

(15)

Using the results of [6] we can calculate the coaction on the hypergeometric function corre-
sponding to each of the maximal cuts and then identify the functions, in which the coaction
is expressed, in terms of (cut) diagrams. In this way we obtain the form of the diagrammatic
coaction on the maximal-cut subspace. For example, for 〈γ1|ω1〉 we obtain:

∆ [〈γ1|ω1〉] = 〈γ1|ω1〉 ⊗ 〈γ1|ω1〉+ 〈γ1|ω2〉 ⊗ 〈γ2|ω1〉 (16)

which is of the same form as equation (4) and can be represented diagrammatically as:

∆







p1 p3

p2 p4






=

p1 p3

p2 p4

⊗

p1 p3

p2 p4

+

p1

p2

p3

p4

⊗

p1 p3

p2 p4

(17)

Here and below we write explicitly the results for the |ω1〉 (blue box) example. Similar results
have been obtained for |ω2〉 (red box).

4 The double-box differential equations

4.1 The homogenous equations

We consider the effect of the differential operator d
d x on the double-box maximal-cut subspace.

Any subtopology with fewer propagators than those cut is then automatically set to zero. We
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may derive a differential equation using integration by parts (IBP) relations. IBP relations are
the same on cut diagrams as on uncut ones.

For the maximal cut corresponding to the γ1 contour we obtain the following first-order
differential equations:

d
d x

p1 p3

p2 p4

= C1(x , D)

p1 p3

p2 p4

+ C2(x , D)

p1

p2

p3

p4

(18a)

d
d x

p1

p2

p3

p4

= C̃1(x , D)

p1 p3

p2 p4

+ C̃2(x , D)

p1

p2

p3

p4

(18b)

where Ci(x , D) and C̃i(x , D) (for i = 1, 2) are rational functions of the spacetime dimension
D and the dimensionless ratio x . Focusing on the blue double box (18a), we may create a
homogeneous differential equation by taking an extra derivative, thus increasing the order of
the differential equation by one, and then eliminating the red double box, understood as an
inhomogeneous term, using its first-order differential equation (18b). We obtain:

d2

d x2

p1 p3

p2 p4

+ A(x , D)
d

d x

p1 p3

p2 p4

+ B(x , D)

p1 p3

p2 p4

= 0

(19)

where A(x , D) and B(x , D) are again rational functions of their arguments. The two inde-
pendent solutions of the differential equation are given by the two maximal cuts of the blue
double box, given by equations (10) and (12) for a, b = 0, by imposing the duality condition
of equation (3) as a boundary condition.

4.2 Non-maximal cuts and inhomogeneous equations

In this section we consider a larger space of contours corresponding to non-maximal cuts. We
compute next-to-next-to-maximal cuts of the double box as all next-to-maximal cuts satisfy the
same differential equation as the maximal cuts, since all six propagator diagrams are reducible
to diagrams with a lower number of propagators. Consequently, the next-to-maximal cuts are
spanned by the maximal cuts and therefore are not part of our basis.

Choosing a contour that puts fewer propagators on-shell increases the dimension of the
active subgroup of homology and cohomology. This can be seen in the form of the coaction
of equation (4) where additional terms, associated with the non-maximal cuts, appear in the
sum. In the differential equation, this is reflected by the existence of extra inhomogeneous
terms. Consider, for example, the contour, referred to as 〈γ3|, corresponding to the following
five-propagator cut:

〈γ3|ω1〉=

p1 p3

p2 p4

. (20)

The differential equation on this diagram is:

d2

d x2

p1 p3

p2 p4

+ A(x , D)
d

d x

p1 p3

p2 p4

+ B(x , D)

p1 p3

p2 p4

= C(x , D)

p1 p3

p2 p4

(21)
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where A(x , D), and B(x , D) are the same coefficients as in equation (19) and C(x , D) is again
a rational function. The diagonal box, appearing on the right-hand side of the equation, has a
single master integral associated with its topology and its maximal cut is known.

This differential equation for the next-to-next maximal cut has the same homogeneous
solution as equation (19). It also features a particular solution which corresponds to the in-
homogenous term.

Solving the inhomogenous differential equations. To solve equation (21) we make use of
the fact that maximal-cut subspace is part of the solution space of this differential equation.
Motivated from the form of equation (10) we define for i = 1,2, 3 :

gi(x) =
〈γi|ω1〉
fa=0,b=0

, with g1(x) = 2F1 (−ε, 1+ 2ε; 1; x) (22)

where fa,b has been defined in equation (11), 〈γi| for i = 1, 2 defined in equation (13) and
〈γ3| corresponds to the cut contour represented in the diagram of equation (20) which we are
interested in computing. The choice of normalization is motivated by the fact that it simplifies
the form of g1(x), which is part of the space of solutions of the differential equation.

Starting with a first-order inhomogeneous differential equation for g3(x), we follow the
procedure of section 4.1 to eliminate the diagonal-box inhomogeneous term and generate a
third-order homogeneous differential equation for g3(x):

(1− x)x2 d3 g3(x)
d x3

+2x(1−2x)
d2 g3(x)

d x2
+
�

x(3ε2+2ε−2ε) + 4ε(1+ ε)
� d g3(x)

d x
−ε2(1+2ε)g3(x) = 0

(23)
This differential equation can be recognized as the defining differential equation of the 3F2
function. The simplicity of its form follows directly from the normalization chosen in (22).
We can compare equation (23) with the general form of the 3F2 differential equation [14] and
identify the three-dimensional solution space of the cut diagram as:

p1 p3

p2 p4

=− 2
Γ (−ε)2

Γ (−2ε)2
t−3−2εx−2−2ε(1− x)ε

�

c1(ε) 2F1 (−ε, 1+ 2ε; 1; x)

+c2(ε)
(−x)−ε(1− x)−εΓ (1+ 3ε)
Γ (1+ ε) Γ (1+ 2ε) 2F1

�

1+ 2ε, 1+ 2ε; 2+ 3ε;
1
x

�

+c3(ε) (1− x)1+2ε
3F2 (1, 1,2+ 3ε; 2+ ε, 2+ 2ε; 1− x)

�

(24)

where ci(ε), i = 1, 2,3 are yet-undetermined coefficients which span the entire three-dimensional
solution space. We note that the first two of the three terms span the maximal-cut subspace of
the double box and the third term is associated with the non-maximal cut.

Determining the coefficients. Equation (24) can be understood as the sum of the homoge-
neous and particular solutions of equation (21). As a result, the value of the c3(ε) coefficient,
which corresponds to the particular solution, is determined by the form of the diagonal-box
inhomogeneous term. We can solve for c3(ε) by generating a third-order differential equation
which features the diagonal-box and demanding that (24) is a solution to the equation:

d3

d x3

p1 p3

p2 p4

+ C ′1
d2

d x2

p1 p3

p2 p4

+
d

d x
C ′2

p1 p3

p2 p4

+ C ′3

p1 p3

p2 p4

= 0.

(25)
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Substituting (24) into (25), the terms that feature c1(ε) and c2(ε) vanish among themselves
and we obtain an algebraic equation which determines c3(ε):

c3 =
12ε(1+3ε)
(1+ε)(1+2ε)

x2+2ε(1−x)1−2ε

t−3−2ε

p1 p3

p2 p4

= 12ε(1+3ε)
(1+ε)(1+2ε)

Γ (1+3ε)Γ (1+2ε)
Γ (1+ε)3

, (26)

where in the last step we have inserted the maximal cut of the diagonal box, which we have
separately computed using the Baikov parametrization.

To determine the values of c1(ε) and c2(ε), we again enforce the duality condition (3) as
a boundary condition. This requires to have solved the entire system of differential equations,
which includes 〈γ3|ω2〉 i.e., the same cut but applied to the red double box, obtained by setting
up an equation similar to equation (25), but for 〈γ3|ω2〉. To implement the boundary condition
we demand:

〈γ3|ω1〉=O(ε), 〈γ3|ω2〉=O(ε) (27)

which fixes c1(ε) and c2(ε) to be:

c1(ε) = 0, c2(ε) = −
3
2

. (28)

The process of fixing the undetermined coefficients is equivalent to defining the 〈γ3| con-
tour. In this way we have determined the basis of the three-dimensional cohomology group
that includes the two maximal cuts as well as the 〈γ3| cut.

5 The coaction of cuts

Having defined the 〈γ3| contour we can now apply the coaction on the hypergeometric func-
tions of 〈γ3|ω1〉 and calculate the coaction of the cut, which takes the form of equation (4):

∆ [〈γ3|ω1〉] = 〈γ3|ω1〉 ⊗ 〈γ1|ω1〉+ 〈γ3|ω2〉 ⊗ 〈γ2|ω1〉+ 〈γ3|ω3〉 ⊗ 〈γ3|ω1〉 (29)

Diagrammatically this takes the form:

∆







p1 p3

p2 p4






=

p1 p3

p2 p4

⊗

p1 p3

p2 p4

+

p1

p2

p3

p4

⊗

p1 p3

p2 p4

+

p1 p3

p2 p4

⊗

p1 p3

p2 p4

.

(30)

We have also followed the procedure outlined in section 4.2 to define the



γ4

�

� and 〈γ5|
contours, corresponding to the following cut diagrams:




γ4

�

�ω1

�

=

p1 p3

p2 p4

, 〈γ5|ω1〉=

p1 p3

p2 p4

. (31)

The spaces of these cuts are also three-dimensional, containing the two maximal cuts as well
the non-maximal cut. The diagrammatic coaction on these cuts of the double box is given by:
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∆









p1 p3

p2 p4









=

p1 p3

p2 p4

⊗

p1 p3

p2 p4

+

p1

p2

p3

p4

⊗

p1 p3

p2 p4

+

p1 p3

p2 p4

⊗

p1 p3

p2 p4

(32)

∆









p1 p3

p2 p4









=

p1 p3

p2 p4

⊗

p1 p3

p2 p4

+

p1

p2

p3

p4

⊗

p1 p3

p2 p4

+ p1+p2 p3+p4 ⊗

p1 p3

p2 p4

.

(33)

6 Summary and discussion

We have calculated the coaction for a number of cuts of the double box, defining the coho-
mology group basis associated with each cut. We have also demonstrated how the solution of
the differential equation for each cut appears in the coaction and how the duality condition,
required by the coaction, can be used as a boundary condition.

The differential equations for this work were obtained using IBP relations. A non-trivial
consistency check to be performed is to derive the same differential equations from the coac-
tion. Constructing differential equations in this way allows one to interpret the coefficients
of the differential equations via the ε expansion of the cut diagrams appearing in the coac-
tion [2]. Future research will also focus on calculating the remaining cuts of the double box
and thus further testing the differential-equation techniques discussed here.

While the form of the two-loop coaction in the form of equation (4) has been well es-
tablished, an algorithmic approach to choosing the basis of integration contours that satisfy
equation (4), is yet to be developed. This has been achieved at the one-loop level in full gen-
erality. Analyzing the coaction on the uncut double-box topology will contribute towards this
goal at the two-loop level.

A related aspect of these calculations, not discussed in the present talk, is the definition
of explicit integration contours by identifying specific integration endpoints for every parame-
ter of a given parametrization, similarly to the work conducted in [9] and [15] for the Baikov
parametrization. In the context of non-maximal double-box cuts, these direct integration tech-
niques are harder to use for obtaining results in a closed form in ε, but are nevertheless an
important aspect to consider in order to determine a general rule for the basis of integration
contours of two-loop diagrams, required by the coaction.
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