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Abstract

We present a novel framework to streamline the calculation of jet and beam functions to
next-to-next-to-leading order (NNLO) in perturbation theory. By exploiting the infrared
behaviour of the collinear splitting functions, we factorise the singularities with suitable
phase-space parametrisations and perform the observable-dependent integrations nu-
merically. We have implemented our approach in the publicly available code pySecDec
and present first results for sample jet and beam functions.
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1 Introduction

In recent years, Soft-Collinear Effective Theory (SCET) has been successful in describing ob-
servables at lepton as well as hadron colliders through the resummation of large logarithms
appearing in different corners of phase space. The resummation in the SCET framework relies
on an underlying factorisation theorem consisting of hard (H), beam (B), jet (J), and soft (S)
functions,

dσ = H ·
∏

i

Bi ⊗
∏

j

J j ⊗ S . (1)

All these functions can be calculated in perturbation theory order-by-order in the strong-
coupling expansion. The resummation can be performed by evolving them to a common
renormalisation scale by solving the corresponding renormalisation group equations (RGE).
The calculation of these functions often becomes challenging at higher orders. In particular,
the jet, beam, and soft quantities depend on the specific observable and need to be calculated
on a case-by-case basis. In recent years, there have been efforts in automating the calculation
of these perturbative ingredients. Whereas di-jet soft functions are now available to next-to-
next-to-leading order (NNLO) for many SCET-1 and SCET-2 observables through the publicly
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available package SoftSERVE [1–3], an extension to general N-jet soft functions is currently
in progress [4]. There have also been efforts in automating the calculation of jet and beam
functions at NLO [5, 6], and in this work we plan to bring these efforts to the NNLO level,
which is essential to achieve high-precision resummations at collider processes.

2 Jet functions

The jet functions appear in SCET factorisation theorems whenever one considers processes
with coloured partons in the final state at both lepton or hadron colliders. In this work,
we focus on quark jet functions, which are defined in terms of the collinear field operator
χ =W †

n̄
/n/̄n
4 ψ via

� /n
2

�

βα

Jq(τ,µ) =
1
π

∑

X

(2π)dδ
�

Q−
∑

i

k−i
�

δ(d−2)
�∑

i

k⊥i
�

〈0|χβ |X 〉 〈X | χ̄α |0〉M(τ; {ki}) ,

(2)

where Wn̄ denotes a collinear Wilson line, and we introduced light-cone coordinates with
k−i = n̄ · ki , k+i = n · ki and a transverse component k⊥,µ

i satisfying n · k⊥i = n̄ · k⊥i = 0, along
with n2 = n̄2 = 0 and n · n̄ = 2. The sum over X refers to the phase space of the final-state
particles and M(τ; {ki}) denotes a generic measurement function in Laplace space, with τ
being the corresponding Laplace variable and {ki} the momenta of the final-state particles.
The expansion of the bare jet functions in the strong coupling (as = αs/4π) in Laplace space
can then be written as

J0
q (τ) = 1+

∞
∑

k=1

(Zαas)
k �µ2τ̄2

�kε
J (k)q (τ,ε) , (3)

where τ̄ = τeγE with γE ' 0.5772 being Euler’s constant, and Zα = 1− asβ0/ε is the strong-
coupling renormalisation constant in d = 4− 2ε dimensions in the MS-scheme.

2.1 NLO calculation

At NLO one encounters a two-body phase space for the calculation of the jet functions in terms
of an on-shell gluon (kµ) and a quark (pµ) momentum. However, according to (2) the sum of
their large components is constrained by the total jet energy Q and their transverse momenta
must balance each other. This leads to the following parametrisation (defining z̄ = 1− z),

k− = zQ, p− = z̄Q, |~k⊥|= |~p⊥|= kT , cosθk = 1− 2tk . (4)

At NLO the collinear matrix element is proportional to the well-known splitting function [7],

P(0)q∗→gq(z) =
CF

z

�

1+ z̄2 − εz2
�

. (5)

We then parametrise the one-emission measurement function in the form (see also [1–3]),

M1(τ; p, k) = exp
�

−τkT

�

kT

zQ

�n

f (z, tk)
�

, (6)

where the exponential is a result of the Laplace transformation of the momentum-space mea-
surement function, and the function f (z, tk) is assumed to be finite and non-zero in the singular
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limit of the matrix element z→ 0. With this ansatz for the generic measurement function, we
arrive at the following master formula for the NLO quark jet functions,

J (1)q (τ,ε) =(τQ)
−2nε
1+n

8e−γEε

(1+ n)
p
π

Γ
�

− 2ε
1+n

�

Γ
�1

2 − ε
�

×
∫ 1

0

dz z−1− 2nε
1+n

�

zP(0)q∗→gq(z)
�

∫ 1

0

dtk (4tk t̄k)
− 1

2−ε f (z, tk)
2ε

1+n . (7)

Notice that the kT -integration is already performed, and we are thus left with two remaining
integrations over the splitting variable z and the angular variable tk, which we perform numer-
ically. As seen above, all singularities are nicely factorised in this representation in terms of the
gamma function and the monomial z−1− 2nε

1+n . The explicit dependence on the observable then
enters through the parameter n defined in (6) and the function f (z, tk), which parametrises
the dependence on the splitting variable and the azimuthal angle θk.

2.2 NNLO calculation

The NNLO contribution to the jet functions involves two different kinds of contributions, viz.
the real-virtual (RV) and the real-real (RR) contribution. In the RV case, the calculation follows
similarly to the NLO case since the phase space still consists of two particles. In particular, the
measurement function is again given by (6) and the matrix element is now related to the
one-loop correction to the splitting function [8–10],

P(1)q∗→gq(z) =
CF

z1−εz̄−ε

§

(1+ z̄2 − εz2)
�

CF + (CF − CA)
�

1−
ε2

1− 2ε

�

− CA 2F1

�

1,−ε; 1− ε;−
z̄
z

�

+ (CA− 2CF ) 2F1

�

1,−ε; 1− ε;−
z
z̄

�

�

+ (CF − CA)
ε2z̄(1+ z̄)

1− 2ε

ª

. (8)

In terms of this, the master formula for the RV contribution takes the form,

J (2)q,RV (τ,ε) =(τQ)
−4nε
1+n

42+επ e−2γEε

1+ n

Γ (− 4ε
1+n) cot(πε)

ε Γ (1/2− ε)2

×
∫ 1

0

dz z−1− 4nε
1+n

�

z P(1)q∗→gq(z)
�

∫ 1

0

dtk (4tk t̄k)
− 1

2−ε f (z, tk)
4ε

1+n . (9)

The calculation of the RR contribution is, on the other hand, more involved due to the com-
plicated singularity structure of the 1 → 3 splitting functions [11–13]. In particular, it turns
out one cannot factorise all the overlapping singularities of the matrix elements with a single
parametrisation in this case. In order to tackle the RR contribution, we then start from the
following parametrisation of the three-body phase space,

a =
k−lT

l−kT
, b =

kT

lT
, z =

k− + l−
Q

, qT =
Æ

(k− + l−)(k+ + l+) , (10)

where kµ and lµ are the momenta of the emitted partons, while we again denote the final-state
momentum of the mother quark by pµ. Here, a is a measure of the rapidity difference of the
emitted daughter particles, b is the ratio of their transverse momenta, and z and qT parametrise
the dependence on their total light-cone momenta. In addition, we also need three angles
θk,θl ,θkl , which we rewrite in terms of tk, t l , tkl , similar to the NLO parametrisation discussed
above. We also find it convenient to remap the variables a and b to the unit hypercube, which
automatically introduces four sectors for each contribution.
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To factorise the divergences of the RR contribution, we employ a mixed strategy of sector-
decomposition steps, non-linear transformations and selector functions (details will be given
in [14]). We then introduce a similar generic measurement function for the two-emission case,

M2(τ; p, k, l) = exp
�

−τqT

�

qT

zQ

�n

F(a, b, z, tk, t l , tkl)
�

, (11)

whose exact form depends on the specific parametrisation and the divergences of the matrix
element. While the RR contribution involves three colour structures (C2

F , CF CA, CF TF n f ), the
calculation simplifies significantly for the CF TF n f piece, where the above parametrisation can
be used to factorise all divergences. Specifically, the singularities arise in the limits qT → 0,
z → 0 and in the overlap of a → 1 and tkl → 0 in this case. The overlapping divergence is
a result of the configuration where the partons with momenta kµ and lµ become collinear to
each other. It can be resolved with a simple substitution (a, tkl)→ (u, v) as shown in [1–3].

The calculation of the C2
F and CF CA colour structures, on the other hand, involve more

complicated singularity patterns. Moreover, one needs to ensure that the function F defined
in (11) stays finite and non-zero in the singular limits of the matrix elements, which poses ad-
ditional constraints on the phase-space parametrisations. We have developed a strategy that
satisfies these constraints – while properly factorising all singularities – which requires, how-
ever, to introduce about a dozen different parametrisations for the C2

F and CF CA contributions.
After factorising all divergences into monomials, one needs to perform a Laurent expansion

to expose the divergences in the dimensional regulator ε, followed by numerical integrations
of the associated coefficients. To perform these steps, we use the publicly available package
pySecDec [15]. The numerical integrations are then performed with the Vegas routine as
implemented in the Cuba library inside the pySecDec framework.

2.3 Renormalisation

In Laplace space the renormalisation of the jet functions takes a multiplicative form, Jq = ZJq
J0

q ,
and the corresponding renormalisation group equation reads,

d
d lnµ

Jq(τ,µ) =
�

2g(n) Γcusp(αs) L + γJ(αs)
�

Jq(τ,µ) , (12)

where g(n) = (n+1)/n, L = ln
�

µτ̄/ (Qτ̄)
n

1+n
�

, and Γcusp(αs) and γJ(αs) are the cusp and non-
cusp anomalous dimensions, respectively. Expanding the anomalous dimensions in the form
G(αs) =

∑∞
n=0 Gnan+1

s , the solution of the RGE becomes up to two-loop order,

Jq(τ,µ) = 1+ as(µ)
§

g(n) Γ0 L2 + γJ
0 L + cJ

1

ª

+ a2
s (µ)

§

g(n)2
Γ 2

0

2
L4 + g(n)

�

γJ
0 +

2β0

3

�

Γ0 L3

+

�

g(n) (Γ1 + Γ0cJ
1) + γ

J
0

�γJ
0

2
+ β0

�

�

L2 +
�

γJ
1 + cJ

1(γ
J
0 + 2β0)

�

L + cJ
2

ª

. (13)

The renormalisation constant ZJq
satisfies a similar RGE as (12) and the solution follows as

ZJq
(τ,µ) = 1 + as(µ)

�

−g(n)
Γ0
2

1
ε2
−
�

g(n)Γ0 L +
γJ

0

2

�

1
ε

�

+ a2
s (µ)

§

g(n)2
Γ 2

0

8
1
ε4

+

�

g(n)2
Γ 2

0

2
L + g(n)Γ0

�γJ
0

4
+

3β0

8

�

�

1
ε3
+
�

g(n)2
Γ 2

0

2
L2 + g(n)

Γ0
2

�

γJ
0 + β0

�

L

−
g(n)Γ1

8
+
(γJ

0)
2

8
+
β0γ

J
0

4

�

1
ε2
−
�

g(n)
Γ1
2

L +
γJ

1

4

�

1
ε

ª

. (14)
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Table 1: Two-loop non-cusp anomalous dimension (left) and finite term of the renor-
malised jet function (right) for thrust. The analytic results have been extracted
from [16].

Analytic This work

γ
n f

1 −26.699 −26.699(8)

γ
CA
1 −6.520 −6.522(130)

γ
CF
1 21.220 21.219(119)

Analytic This work

c
n f

2 −10.787 −10.787(15)

cCA
2 −2.165 −2.169(189)

cCF
2 4.655 4.654(146)
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Figure 1: The two-loop non-cusp anomalous dimensions (left) are compared against
the semi-analytic results (BRT) of [1]. The new cJ

2 coefficients (right) are obtained
for different angularity values. The numerical uncertainties are too small to be visible
on the plot.

This form of ZJq
provides a strong check of our calculation for the higher poles, since the

observable-independent anomalous dimensions Γ0, Γ1 and β0 are all known (we use the con-
ventions from [1–3]). On the other hand, we can use (13) and (14) to extract the non-cusp
anomalous dimensions γJ

0 and γJ
1 from the 1/ε poles, and the non-logarithmic coefficients cJ

1
and cJ

2 of the renormalised jet functions from the finite terms of the bare NNLO calculation.

2.4 Results

With this setup, we computed the jet functions for the event-shape observables thrust and
angularities. As the NLO case is trivial, we focus here on the NNLO numbers, which we present
in the form γJ

1 = γ
CF
1 C2

F + γ
CA
1 CF CA + γ

n f

1 CF TF n f , and similarly for cJ
2 . Our numbers for

thrust are summarised in Table 1, which show a very good agreement with the analytic results
from [16]. Our uncertainty estimates, on the other hand, seem to be too conservative at
present and require further investigations. We also find excellent agreement for angularities
for the γJ

1 coefficients with the literature [1], as can be seen from the left panel of Figure 1. On
the right panel, we present our numbers for the cJ

2 coefficients for different angularity values,
which significantly improve the EVENT2 fits results from [17].

3 Beam functions

The beam functions are defined via proton matrix elements of collinear field operators. In
contrast to the jet functions discussed above, the beam functions are non-perturbative objects,
which must be matched onto parton distribution functions (PDF) to extract the perturbative
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information. At the partonic level, the quark-to-quark beam function is defined e.g. as

1
2

�

/n
2

�

βα
Bqq(x ,τ,µ) =

∑

X

δ
�

(1− x)P− −
∑

i

k−i
�

〈P| χ̄α |X 〉 〈X |χβ |P〉M(τ; {ki}) , (15)

where |P〉 is now a partonic state with momentum Pµ. In the general case, the matching onto
the partonic PDF fi j then takes the form,

Bi j(x ,τ,µ) =
∑

k

∫ 1

x

dz
z

Iik

� x
z

,τ,µ
�

fk j(z,µ) . (16)

While we use the same notation for the Laplace-space measurement function M(τ; {ki}) as
in the previous section, the beam functions Bi j and the matching kernels Ii j are distribution-
valued in the momentum fraction x . To avoid this, we perform an additional Mellin transfor-
mation, and we denote the corresponding quantities in Mellin space by bBi j and bIi j . In Mellin
space, the bare quantities have a similar perturbative expansion as the jet functions in (3).

3.1 Calculational details

The collinear matrix elements in the definition of the beam functions can be extracted from the
well-known splitting functions using crossing symmetry. Notice that at NNLO, the calculation
of the beam functions only involves a two-body phase space, for which we employ similar
parametrisations as in the jet-function case discussed above. In the following, we focus on
the quark-to-quark beam function for transverse momentum resummation, which is defined
in SCET-2, and as such requires an additional rapidity regulator. To this end, we adopt the
analytic regulator from [18] in a symmetrised version (see also [1–3]), and we follow the
collinear anomaly approach [19] to extract the final matching kernels. Specifically, we write
the product of soft and beam-function kernels in Mellin space (N1, N2) in the form

�

S(τ,µ,ν) bIqq(N1,τ,µ,ν) bIq̄q̄(N2,τ,µ,ν)
�

q2

α=0
≡
�

τ̄2q2
�−Fqq̄(τ,µ)

bIqq(N1,τ,µ) bIq̄q̄(N2,τ,µ) ,

(17)

where α is the rapidity regulator, ν is the rapidity scale and q2 refers to the hard scale in the
problem, e.g. the invariant mass of the Drell-Yan pair. On the right-hand-side of (17), the large
rapidity logarithms are then resummed to all orders through the anomaly coefficient Fqq̄(τ,µ).
Due to our specific choice of the rapidity regulator, the collinear and anti-collinear matching
kernels on the left-hand-side are furthermore symmetric under the exchange of nµ↔ n̄µ, and
it is therefore sufficient to compute only one of them explicitly. On the other hand, we also need
the soft function in the same regularisation scheme, for which we rely on SoftSERVE [1–3].

The renormalised anomaly coefficient then satisfies the RGE

d
d lnµ

Fqq̄(τ,µ) = 2 Γcusp(αs) , (18)

whose solution, up to two loops, takes the form

Fqq̄(τ,µ) = as(µ)
¦

2Γ0 L + d1

©

+ a2
s (µ)

¦

2β0Γ0 L2 + 2 (Γ1 + β0d1) L + d2

©

, (19)

where L = ln(µτ̄) and di are the non-logarithmic terms of the renormalised anomaly coeffi-
cient. The matching kernels, on the other hand, obey the following RGE in Mellin space,

d
d lnµ

bIqq(N ,τ,µ) = 2
�

Γcusp(αs) L + γB(αs)
�

bIqq(N ,τ,µ)− 2
∑

j

bIq j(N ,τ,µ) bPjq(N ,µ) , (20)
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Table 2: Two-loop non-cusp anomalous dimension (left) and anomaly coefficient
(right) for pT -resummation. The analytic results have been extracted from [20,21].

Analytic This work

γ
n f

1 −11.395 −11.392(8)

γ
CF
1 10.610 10.594(40)

Analytic This work

d
n f

2 −8.296 −8.294(4)

dCF
2 0 −0.048(90)
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Figure 2: Comparison of the two-loop non-logarithmic contribution to the quark-to-
quark matching kernel for pT resummation against the analytic results of [20,21].

where γB is the non-cusp anomalous dimension, and the sum in the last term of the right-hand-
side runs over all partons. In this notation, bPqq (bPgq) is simply the Mellin-transformed splitting
function Pq→qg∗ (Pq→gq∗). From the solution of (20), we finally extract the non-logarithmic
pieces bIqq,i(N) by expanding in as(µ) and setting µ= 1/τ̄, similar to (13).

3.2 Results

At NNLO we have calculated all contributions except for the CF CA colour structure appearing
in the Pq→g gq∗ splitting kernel. As can be seen in Table 2, our results for the remaining colour
structures of the anomaly coefficient d2 as well as the non-cusp anomalous dimension γB

1 are
consistent within numerical uncertainties with the analytic results from [20,21]. In Figure 2,
we display the non-logarithmic contribution to the renormalised matching kernel bIqq,2(N) as
a function of the Mellin parameter N . For both colour structures computed so far, we again
find a very good agreement with the known analytic results.

4 Conclusions

We have presented a formalism to automate the calculation of two-loop jet and beam functions.
Due to the complicated divergence structure of the underlying collinear matrix elements, we
encountered many overlapping singularities in the RR contribution, which we disentangled
with the help of a mixed strategy based on sector decomposition, non-linear transformations
and selector functions. We furthermore validated our setup against known results for the thrust
jet function and the transverse-momentum-dependent beam function, and we obtained a new
prediction for the angularity jet function. While we have not yet finished the implementation
of the RR contribution in the beam-function case, we plan to look into more observables soon.
In the longer term, we also envisage to provide a public code for the calculation of jet and
beam functions, similar to the SoftSERVE distribution.
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