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The pion-photon transition form factor at two loops in QCD
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Abstract

We report on the fully analytic calculation of the leading-power contribution to the
photon-pion transition form factor γγ∗→ π0 at two loops in QCD. The applied techniques
are based on hard-collinear factorization, together with modern multi-loop methods. We
focus both, on the technical details such as the treatment of evanescent operators, and
the phenomenological implications. Our results indicate that the two-loop correction is
numerically comparable to the one-loop effect in the same kinematic domain. We also
demonstrate that our results will play a key role in disentangling various models for the
twist-two pion distribution amplitude thanks to the envisaged precision at Belle II.
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1 Introduction

Hard exclusive processes play a prominent role in exploring the strong interaction dynamics
of hadronic reactions in the framework of QCD. In this context one of the simplest exclusive
matrix elements is the pion-photon transition form factor Fγπ(Q2)which appears in the process
γγ∗→ π0. At large momentum transfer, it serves for testing theoretical predictions based upon
perturbative QCD factorization.

Experimentally, the pion-photon transition form factor (TFF) with one on-shell and one off-
shell photon can be extracted from measurements of the differential e+ e− → e+ e−π0 cross
section [1–3]. A measurement of BaBar in 2009 [2] reported on an unexpected scaling viola-
tion of the TFF at large Q2 (see Fig. 1) which triggered quite some interest in the community.
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Figure 1: The γγ∗ → π0 transition form factor multiplied by Q2. The dashed line
indicates the asymptotic behaviour of the form factor. Taken from [3].

A subsequent analysis at Belle [3] did not find the pronounced increase of the pion TFF in the
high-Q2 region, resulting in a moderate overall tension. The large amount of data that will be
accumulated at Belle II will eventually clarify the situation.

On the theory side the TFF at large momentum transfer is expanded in powers of Λ2
QCD/Q

2,
and at leading power (LP) it is expressed as a convolution of the perturbatively calculable hard
coefficient function (CF) with the twist-two pion light-cone distribution amplitude (LCDA) in
accordance with the hard-collinear factorization theorem [4]. While the hard CF has been
studied to next-to-leading order (NLO) [5–8] and in the large-β0 approximation at next-to-
next-to-leading order (NNLO) [9], the full NNLO QCD correction was missing until recently,
and we report on its analytic computation in the present article. The pion distribution am-
plitude, on the other hand, is the non-perturbative object in the factorization formula, which
thanks to its universality is of great importance also for other processes such as the semilep-
tonic or nonleptonic decays of B-mesons.

The full analytic NNLO QCD prediction of the TFF Fγπ(Q2) in γγ∗ → π0 was first put
forward in [10], with a parallel computation appearing in [11] and the two results being in
full agreement with each other. Our computation takes advantage of the soft-collinear effective
theory (SCET) factorization program. To this end, we evaluate an appropriate bare QCD matrix
element at O(α2

s ) using modern multi-loop techniques, and implement the ultraviolet (UV)
renormalization and infrared (IR) subtraction, including the proper treatment of the emerging
evanescent operator, together with the subtleties arising from the γ5 ambiguity of dimensional
regularization. Furthermore, we analyse the numerical impact of the two-loop correction to
the TFF, and compare different models for the twist-two pion LCDA to current experimental
data. While current data still leaves room for interpretation, confronting the obtained theory
predictions with the forthcoming precision of Belle II measurements will allow to distinguish
between different LCDA models.

2 The pion-photon transition form factor

We start by setting up the theory framework for establishing the hard-collinear factorization
formula of the transition form factor Fγπ(Q2), which is defined in terms of the matrix element
of the electromagnetic current between an on-shell photon with momentum p′ and a pion with
momentum p,

〈π(p)| jem
µ |γ(p

′)〉= g2
emεµναβqαpβεν(p′)Fγπ(Q

2) . (1)

022.2

https://scipost.org
https://scipost.org/SciPostPhysProc.7.022


SciPost Phys. Proc. 7, 022 (2022)

Here q = p − p′ is the transfer momentum and Q2 = −q2. εν(p′) is the polarization vector
of the on-shell photon, and eq denotes the electric charge of the quark field in units of the
positron charge. For later convenience we also introduce two light-like vectors nµ and n̄µ
satisfying n2 = n̄2 = 0 and n · n̄ = 2. They allow for the definition of the perpendicular
component of any four-vector via aµ = (n · a) n̄µ/2 + (n̄ · a)nµ/2 + aµ⊥. The kinematics at
leading power can then be taken as pµ = (n̄ · p)/2 nµ and p′µ = (n · p)/2 n̄µ, which entails the

scaling (n̄ · p)∼ (n · p′)∼O(
p

Q2).
Applying the hard-collinear factorization theorem results in the following LP contribution

to the γγ∗→ π0 form factor

FLP
γπ(Q

2) =
(e2

u − e2
d) fπp

2Q2

∫ 1

0

d x T2(x ,Q2,µ)φπ(x ,µ)≡
(e2

u − e2
d) fπp

2Q2
T2(x ,Q2,µ)⊗φπ(x ,µ) .

(2)

Here T2 is the hard coefficient function which can be expanded perturbatively in the form
(similarly for any other partonic quantity)

T2 =
∞
∑

`=0

a`s T (`)2 , as ≡
αs

4π
. (3)

The non-perturbative object in the factorization formula (2) is the twist-two pion LCDAφπ(x ,µ),
which is defined by the renormalized matrix element on the light-cone

〈π(p)| [q̄(zn̄)[zn̄, 0]γµγ5q(0)]R |0〉= −i fπpµ

∫ 1

0

d x ei xzn̄·p φπ(x ,µ) . (4)

[zn̄, 0] is the short-hand notation for the Wilson line which renders the non-local matrix ele-
ment gauge invariant.

We evaluate the hard coefficient function by inspecting the following correlation function

g2
eme2

q

2 n̄ · p
Πµν = i

∫

d4z e−iq·z ×〈q̄( x̄ p)q(x p)|T{ jem
µ (z), jem

ν (0)}|0〉 , (5)

which can be parameterized by the two form factors for the bilinear quark currents with the
spin structures [8]

Γ
µν
A = γµ⊥ /̄nγ

ν
⊥ , Γ

µν
B = γν⊥ /̄nγ

µ

⊥ . (6)

We will devote the next section to the two-loop calculation of the bare matrix element Π(2)µν ,
and subsequently derive the master formula for the hard coefficient function T2.

3 Two-loop calculation

The techniques that we apply during the calculation of the bare two-loop amplitude have
become standard in multi-loop computations.

We generate the Feynman diagrams in two ways, with Feynarts [12] and by means of
an in-house routine. Selected diagrams are shown in Fig. 2. The number of diagrams gets
reduced by the fact that certain diagrams have color factor zero (e.g. the third one in Fig. 2),
vanish due to the Furry theorem and/or represent a flavor-singlet contribution (e.g. the last
one in Fig. 2). What remains is a total of 42 diagrams (plus the ones with the two photons
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Figure 2: Sample Feynman diagrams.
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Figure 3: Complete set of master integrals for the two-loop calculation.

interchanged), which we compute using dimensional regularization with D = 4−2ε to simul-
taneously regulate UV and IR divergences.

After the Dirac and tensor reduction we are left with two-loop scalar integrals which we
further process with the Mathematica version of FIRE [13], an implementation of Laporta’s
algorithm [14,15] based on integration-by-parts identities [16,17]. In addition, we exploit the
fact that two of the quark momenta are parallel to each other, p1 ≡ x p∝ (1− x)p ≡ x̄ p = p2,
which yields additional relations between integrals based on momentum conservation, which
in turn enable us to arrive at the minimal set of master integrals. It is also worth mention-
ing that at this stage, additional Dirac structures besides ΓµνA,B disappear from the sum of all
diagrams, making the QED Ward identity and charge symmetry manifest and providing an
important check of our calculation.

In total, we get the 12 independent master integrals depicted in Fig. 3. The easier ones
among them can be solved in closed form in terms of Gamma- and hypergeometric func-
tions, which we expand in ε with HypExp [18, 19]. The more complicated ones are evalu-
ated with the method of differential equations [20–23], partially in a canonical basis [24].
Furthermore, Mellin-Barnes representations [25] are employed, both to compute asymptotic
expansions for x → 0 or x → 1 to get the boundary conditions for the differential equations,
and to derive the full analytic expressions of the master integrals. The sector decomposition
program FIESTA [26,27] is used to perform numerical checks of our analytic results. We ob-
tain the ε-expansion of all master integrals analytically in terms of harmonic polylogarithms
(HPLs) [28–30] with weight-indices 0 and 1. To the order we are working, HPLs of at most
weight four appear in the amplitude. Below, we give the results for the master integrals in the
first column of Fig. 3, which we label I1(x), I5(x) and I9(x). Using

∫

dDk/(2π)D as integration
measure, and factoring out (i/((4π)D/2Γ (1− ε)))2 together with an appropriate power of Q2

to make the integral dimensionless, we obtain (Ha1,...,an
(x) are HPLs)

x̄2 xε4 I1(x) = −1+ 2ε(H0(x)−H1(x)) + ε
2
�

H2(x)− 4H0,0(x) + 3H1,0(x)− 4H1,1(x)−
1
2ζ2

�

+ ε3
�

ζ2H0(x)− 3ζ2H1(x)− 2H3(x) + 2H1,2(x) +H2,0(x)−H2,1(x) + 8H0,0,0(x)
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−6H1,0,0(x) + 4H1,1,0(x)− 8H1,1,1(x) +
13
2 ζ3

�

+ ε4 (−13ζ3H0(x) + 5ζ3H1(x)

− ζ2H2(x)− 2ζ2H0,0(x)− 10ζ2H1,1(x)− 2H1,3(x)− 5H2,1,1(x)− 2H2,0,0(x)

− 2H3,0(x)−H3,1(x) + 4H1,1,2(x) + 4H4(x)−H2,1,0(x)−H2,2(x)− 8H1,1,0,0(x)

−16H0,0,0,0(x) + 12H1,0,0,0(x) + 4H1,1,1,0(x)− 16H1,1,1,1(x)
�

+O(ε5) , (7)

ε4 I5(x) = ε
3
�

−ζ2H0(x)− ζ2H1(x) +H3(x) +H1,2(x)−H2,0(x)−H1,1,0(x) + 3ζ3

�

+ ε4
�

−7ζ3H0(x) + 5ζ3H1(x) + ζ2H2(x)− 2H1,2,0(x) + 2ζ2H0,0(x)− 2ζ2H1,0(x)

− 3ζ2H1,1(x) +H2,1,0(x)− 2H2,2(x) +2H3,0(x) + 2H3,1(x) + 2H1,1,2(x)− 3H4(x)

+2H1,2,1(x) + 2H2,0,0(x) +H1,3(x) + 2H1,1,0,0(x)− 3H1,1,1,0(x) +
51
4 ζ4

�

+O(ε5) ,
(8)

I9(x) =
Γ 5(1− ε)Γ (1− 2ε)Γ (ε)Γ (2ε)
Γ (2− 3ε)Γ (2− 2ε)Γ (1+ ε) 2F1(1,2ε; 1+ ε; x) . (9)

4 UV renormalization and IR subtraction

To arrive at the two-loop contribution to T2(x) we must perform UV renormalization and IR
subtraction. This is done by first introducing the basis {Oµν1 , Oµν2 , OµνE } of non-local operators,

Oµνj (x) =
n̄ · p
2π

∫

dτ ei x̄τn̄·p q̄(τn̄) [τn̄, 0] Γµνj q(0) , (10)

where

Γ
µν
1 = gµν⊥ /̄n , Γ

µν
2 = i εµν⊥ /̄nγ5 , Γ

µν
E = /̄n

�1
2[γ

µ

⊥,γν⊥]− i εµν⊥ γ5

�

, (11)

and then by exploiting the matching equation

Πµν =
∑

a=1,2,E

Ta ⊗ 〈Oµνa 〉 . (12)

By employing the definitions gµν⊥ = gµν − nµn̄ν/2 − nνn̄µ/2 and εµν⊥ ≡ ε
µναβ n̄α nβ/2, we

see that OµνE is an evanescent operator, i.e. it vanishes at D = 4. Since furthermore the CP-
even operator Oµν1 cannot couple to the pseudoscalar π0 state, we encounter a unique phys-
ical operator Oµν2 [8]. Moreover, the Dirac structures are related via the algebraic identities
Γ
µν
A,B = −(Γ

µν
1 ± Γ

µν
2 ± Γ

µν
E ) which we use to switch between different notations.

The correlator Πµν assumes the following form to all orders in αs in terms of the tree-level
matrix elements,

Πµν =
∑

k=1,2,E

∞
∑

`=0

(Zαas)
` A(`)k (x) 〈q̄( x̄ p)Γµνk q(x p)〉(0) , (13)

where the coupling renormalization factor is given by Zα = 1− asβ0/ε+O(a2
s ). Hereafter we

disregard Oµν1 completely from our consierations due to parity. The functions Ta, a = {2, E}
are expanded as in Eq. (3). Due to scaleless integrals in dimensional regularization the matrix
elements of the light-cone operators are simply expanded as

〈Oµνa 〉=
∞
∑

`=0

a`s Z (`)ab ⊗ 〈O
µν

b 〉
(0) =

¦

δab + as Z (1)ab + a2
s Z (2)ab +O(a3

s )
©

⊗ 〈Oµνb 〉
(0) . (14)
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As indicated above, sums over repeated indices run over {2, E}. 〈Oµνa 〉(0) is the tree-level matrix
element of Oµνa , and the renormalization constants Z (`)22 can be extracted from the Efremov-
Radyushkin-Brodsky-Lepage (ERBL) kernel [4,31–36]. Inserting Eqs. (3), (13), and (14) into
Eq. (12) and comparing coefficients of 〈Oµν2,E〉

(0) at any given order in as, we derive the following
“master formulas” for the hard CF at the various loop orders

T (0)2 = T (0)E = A(0)2 ,

T (1)2 = A(1)2 −
∑

a=2,E

Z (1)a2 ⊗ T (0)a = T (1)E − Z (1)E2 ⊗ T (0)E ,

T (2)2 = A(2)2 + Z (1)α A(1)2 −
∑

a=2,E

1
∑

k=0

Z (2−k)
a2 ⊗ T (k)a . (15)

The derivation of these formulas made further use of the relations A(`)2 = A(`)E , Z (1)EE = Z (1)22 and

Z (1)12 = Z (1)2E = 0.
Finally, a word on the mixing between evanescent and physical operators is in order. The

master formulas (15) were derived under the assumption that dimensional regularization is
in Eq. (12) for both UV and IR divergences. However, to determine the UV-renormalization
constants Z (`)ab a different procedure has to be adopted. To this end, the renormalized matrix
elements of the effective operators are expressed as

〈Oµνa 〉=
¦

δab + as

�

M (1)ab + Z (1)ab

�

+ a2
s

�

M (2)ab + Z (2)ab + Z (1)a2 ⊗M (1)2b

�

+O(a3
s )
©

⊗ 〈Oµνb 〉
(0) , (16)

and the matrix elements M (`)ab are obtained with dimensional regularization applied only to the
UV divergences but with the IR regularization scheme being different from the dimensional
one, see e.g. also [8, 37]. Renormalizing the matrix elements of the evanescent operator to
zero yields the relations

Z (1)E2 = −M (1)E2 , Z (2)E2 = −M (2)E2 +M (1)E2 ⊗M (1)22 , (17)

where Z (2)E2 is IR finite albeit both M (2)E2 and M (1)22 being IR divergent.
Collecting all individual pieces in (15) together, all the poles in ε are canceled explicitly as

expected, which represents a nontrivial check for our calculation. As stated earlier, our final
analytic result for the hard CF T (2)2 (x) agrees with that of a parallel computation [11], which
uses quite a different approach based on arguments from conformal symmetry. The result for
T (2)2 (x) is split up into three colour factors and can be expressed as

T (2)2 (x) = β0 CF

�

K(2)
β
(x)/x +K(2)

β
( x̄)/ x̄

�

+ C2
F

�

K(2)F (x)/x +K(2)F ( x̄)/ x̄
�

+ CF/Nc

�

K(2)N (x)/x +K(2)N ( x̄)/ x̄
�

. (18)

Our result for the color structure CFβ0 agrees with the NNLO computation of the large-β0

limit in [9]. The explicit expressions of the functions K(2)
β ,F,N (x) are too lengthy to be given

explicitly here. They can be found in [10], whose arXiv repository also contains the functions
in electronic form.

5 Numerical results

To facilitate our numerical analysis, certain assumptions (models) on the non-perturbative
twist-two pion LCDA φπ(x ,µ0) have to be made. It is convenient to construct/constrain the
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Figure 4: Theory predictions of Fγπ(Q2) at the LL (black dotted), NLL (green dashed),
and NNLL (blue dot-dashed) order in QCD, respectively, adopting Model I in Eq. (20)
as the non-perturbative input for φπ(x ,µ0). The red solid curve further includes the
subleading power contributions evaluated in [8,38].

phenomenological models via the expansion in Gegenbauer polynomials, i.e.,

φπ(x ,µ0) = 6x x̄

�

1+
∞
∑

n=1

a2n(µ0)

�

C3/2
2n (x − x̄) , (19)

where a2n(µ0) are called Gegenbauer moments. It is customary to set the reference scale
µ0 = 1 GeV for model building and then evolve φπ(x ,µ0) to the proper factorization scale
µF with the help of renormalization group equation (RGE) where the one-loop, two-loop, and
three-loop ERBL evolution kernels (anomalous dimension matrix) are available in [4,31], [32–
36], and [39], respectively.

As an illustration of the two-loop effect on the observable Fγπ(Q2), we adopt the so-called
ADS/QCD model forφπ(x ,µ0) proposed in [40]with modifications from recent lattice compu-
tation of the first nontrivial Gegenbauer moment a2(µ0) [41] (Model I in Eq. (20) below). We
display the numerical impact of QCD corrections on Fγπ(Q2) in Fig. 4 at leading-logarithmic
order (LL), next-to-leading-logarithmic order (NLL), and next-to-next-to-leading-logarithmic
order (NNLL), by including the renormalization-group evolution effect of the leading-twist
pion LCDA at one loop, two loops, and three loops.

It is clear from Fig. 4 that the two-loop correction to the photon-pion TFF is rather sig-
nificant. To be more specific, the NNLL correction is responsible for a (4 ∼ 7)% reduction to
FLP,NLL
γπ (Q2) in the kinematic region Q2 ∈ [3, 40] GeV2, in comparison to the ∼ 10% reduction

when advancing from FLP,LL
γπ to FLP,NLL

γπ accuracy. This pattern of QCD correction hierarchy is
also observed for the other two representative models presented in Eq. (20) which validates
the significance of our two-loop computation in general.

Let us now discuss the potentiality of our theory predictions in unraveling the omnipresent
non-perturbative object φπ(x ,µ). For this purpose, we consider three representative models,

Model I : φπ(x ,µ0) =
Γ (2+ 2απ)
Γ 2(1+απ)

(x x̄)απ , with απ(µ0) = 0.422+0.076
−0.067 ; (20)

Model II : {a2, a4, a6, a8}(µ0) = {0.269(47), 0.185(62), 0.141(96), 0.049(116)} ;

Model III : {a2, a4}(µ0) = {0.203+0.069
−0.057 ,−0.143+0.094

−0.087} .
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Figure 5: Theory predictions of the TFF γγ∗→ π0 based on the three models in (20).
The color bands indicate uncertainties from factorization/renormalization scale vari-
ation µF ∈ [1/4, 3/4]Q2. For a comparison, our predictions are confronted with the
experimental measurements from the CLEO [1] (purple squares), BaBar [2] (orange
circles) and Belle [3] (brown spades) Collaborations.

While the background of Model I has been elaborated on above, Model II [42] and III [43–45]
are proposed from the perspective of light-cone and QCD sum rules, respectively.

We collect our theory predictions of Fγπ(Q2) for the three models in (20) in Fig. 5, where we
have purposefully neglected the error-bars quoted in Eq. (20) to enhance the characteristics
of each model. It is then evident that with our two-loop correction taken into account, the
perturbative uncertainties are small enough to allow to distinguish various phenomenological
models forφπ(x ,µ0). As these models are formulated on vastly different principles, a concrete
determination of an appropriate description for φπ(x ,µ) from future experimental data will
certainly be crucial to deepen our understanding of the inner structures of the hadronic states.

6 Conclusion

In conclusion, we have promoted the leading-power theory prediction of the photon-pion tran-
sition form factor to the two-loop order in QCD by combining hard-collinear factorization with
modern multi-loop techniques. The analytic two-loop coefficient function we have obtained
is also directly applicable in the evaluation of the axial-vector contribution to deeply virtual
Compton scattering. In this article, we have presented the complete set of two-loop master in-
tegrals arising in the calculation of γγ∗ annihilation into two collinear on-shell massless quarks.
We expect our results to play an integral role in boosting future developments on the determi-
nation of the leading-twist pion LCDA as well as on exploring the delicate QCD dynamics of
other interesting two-photon processes.
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