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Abstract

We present our recent calculation of the third order corrections to the semileptonic
b→ c and the muon decays. The calculation has been performed in an expansion around
the limit mc ∼ mb, but shows decent convergence even for mc = 0 from which the
contribution to the muon decay can be extracted. For the semileptonic b → c decay
we find large perturbative corrections in the on-shell scheme which can be significantly
reduced by changing to the kinetic scheme for the bottom quark mass. These results are
important input for the inclusive determination of |Vcb| and the Fermi coupling constant
GF .
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1 Introduction

The Cabbibo-Kobayashi-Maskawa (CKM) matrix elements are fundamental constants in the
Standard Model (SM) which describe the flavor mixing in the quark sector and provide the
only source of charge-parity (CP) violation. It is therefore important to determine these con-
stants precisely. One way to determine the CKM matrix elements |Vub| and |Vcb| are inclusive
semileptonic B meson decays B → X c(u)`ν using global fits to the experimental values of the
semileptonic decay widths and moments of kinematical distributions [1–5]. Here, the pres-
ence of the heavy bottom quark allows to describe the decay in the heavy quark effective theory
(HQET), where the decay rate can be given in an expansion in the strong coupling constant
αs and in inverse powers of the heavy quark mass 1/mb. The leading order in 1/mb is given
by the free quark decay b → c`ν which had been known up to O(α2

s ) [6–8] together with
leading terms in the large β0 approximation to higher orders [9]. Higher terms in the 1/mb
expansion are obtained from higher-dimensional operators in the HQE. In these proceedings
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we review the calculation of the semileptonic decay rate at leading order in 1/mb to order
α3

s obtained in Ref. [10] and report on recent progress on the extension of the calculation to
inclusive moments.

2 Calculation

We compute the process

b(p)→ X c(px)l(pl)ν(pν) , (1)

where X c is a state containing charm, light quarks and gluons. The calculation is based on
the optical theorem, this means we have to compute the imaginary part of 5-loop forward
scattering diagrams. Some example diagrams are given in Fig. 1. The total leptonic momentum
is given by q = p` + pν. For the global fits not only the total decay width but also moments
of kinematic distributions are used. In the following we will focus on the recently proposed
q2-moments [11] which are defined by

Q i =

∫

dq2(q2)i
dΓ
dq2

. (2)

Note that Q0 corresponds to the total decay rate Γ . Inclusively these moments, including the
total rate Γ , can be computed from the imaginary part of the forward scattering diagrams by
multiplying the integrands of the individual Feynman diagrams with the appropriate power of
q2 and then integrate. For global fits, moments of the total hadronic invariant mass and the
charged lepton energy have been used.

(a) (b) (c)

(d) (e) (f)

Figure 1: Sample Feynman diagrams which contribute to the forward scattering am-
plitude of a bottom quark at LO (a), NLO (b), NNLO (c) and N3LO (d-f). Straight,
curly and dashed lines represent quarks, gluons and leptons, respectively. The weak
interaction mediated by the W boson is shown as a blob.

Since an analytic calculation retaining the full dependence on the charm and bottom mass
seems out of reach, we compute the diagrams in an asymptotic expansion around

δ = 1−
mc

mb
≈ 0.7 . (3)

Although this limit seems unnatural for the physical values of the charm and bottom quark
masses it has been shown at O(α2

s ) in Ref. [12] that this expansion converges quite fast at the
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physical point and can even be extended to δ → 1. Furthermore, this limit has a couple of
technical advantages:

• To calculate the asymptotic expansion we use the method of regions [13]. In the limit
δ→ 0 the leptonic momentum has to be ultrasoft q ∼ δ ·mb. The number of regions to
be considered is therefore reduced.

• When performing the δ-expansion the leptonic system completely factorizes and can be
integrated out without any IBP reduction. In the end, we are therefore left with 3-loop
integrals, although starting from 5 loops.

The asymptotic expansion has been implemented in dedicated FORM [14] routines and we
made use of the program LIMIT [15] to implement partial fractioning and the minimization
of topologies. In the end we are left with integral families where either all loop momenta
are hard or ultrasoft. The first class of integrals corresponds to on-shell propagator integrals
which are well studied in the literature [16–18]. The second class has recently be considered
for the relation between the kinetic and on-shell mass up to O(α3

s ) [19,20], Here, the relevant
master integrals are given to the necessary order in ε needed for the present calculation. Due
to the large expansion depth of our calculation, we aim at 8 terms of the δ-expansion, huge
intermediate expressions of O(100GB) had to be handled and O(107) scalar integrals with
positive or negative indices up to 12 had to be reduced. For this task we used FIRE [21] in
combination with LiteRed [22,23].1

3 Results

We parametrize the total decay rate as

Γ = Γ0

�

X0 + CF

∞
∑

i=1

�αs

π

�i
X i

�

, (4)

with Γ0 = AewG2
F |Vcb|2m5

b/(192π3), αs ≡ α(5)s (µs), X0 = 1 − 8ρ2 − 12ρ4 ln(ρ2) + 8ρ6 − ρ8,
ρ = mc/mb and Aew = 1.014 is the leading electroweak correction [24]. Our result for the
total decay rate at O(α3

s ) reads

X3 = δ5
�

266929
810

−
5248a4

27
+

2186π2ζ3

45
−

4094ζ3

45
−

1544ζ5

9
−

656l4
2

81
+

1336
405

π2l2
2

+
44888π2l2

135
−

9944π4

2025
−

608201π2

2430

�

+δ6
�

−
284701

540
+

2624a4

9
−

1093π2ζ3

15

+
391ζ3

3
+

772ζ5

3
+

328l4
2

27
−

668
135

π2l2
2 −

1484π2l2
3

+
4972π4

675

+
591641π2

1620

�

+O(δ7 ln2(δ)) , (5)

where we specified the color factors to QCD, set µs = mb and only show the first two expansion
terms. Furthermore we use the notations l2 = ln(2), a4 = Li4(1/2) and ζi is Riemanns zeta
function. The full result expressed in terms of SU(N) color factors and up to O(δ12) can be
found in the ancillary file to Ref. [10]. Recently the results of three color factors up to O(δ9)
have been confirmed in Ref. [25].

1We thank A. Smirnov for providing a private version of Fire which was essential for the reduction.
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Analogously, we can give the result for Q1:

Q1 = Γ0m2
b

�

Y0 + CF

∞
∑

i=1

�αs

π

�i
Yi

�

, (6)

with Y0 = 3/10(1−ρ10)− 9/2(1−ρ6)ρ2 − 24(1−ρ2)ρ4 − 18(1+ρ2)ρ4 ln(ρ2). Our result
for the O(α3

s ) correction reads:

Y3 = δ7
�

−
52480a4

567
+

4372π2ζ3

189
−

8188ζ3

189
−

15440ζ5

189
−

6560l4
2

1701
+

2672π2l2
2

1701

+
89776π2l2

567
−

19888π4

8505
−

608201π2

5103
+

266929
1701

�

+δ8
�

26240a4

189
−

2186π2ζ3

63

+
3910ζ3

63
+

7720ζ5

63
+

3280l4
2

567
−

1336
567

π2l2
2 −

2120π2l2
9

+
9944π4

2835
+

591641π2

3402

−
284701

1134

�

+O(δ9 ln2(δ)) . (7)

Since the leptonic momentum q has to be ultrasoft, i.e. q ∼ δ · mb, the n-th q2 moment is
suppressed by 2n additional powers of δ as compared to the leading δ5 term in Eq. 5.

The convergence of the δ-expansion is studied in Fig. 2. For both, the total rate Γ and the
first q2 moment Q1, one observes that the convergence at the physical point ρ ∼ 0.28 is fast
and does not vary much starting from order δ9 for the total decay rate and δ11 for Q1. Also
at ρ→ 0 one sees a convergence for the high expansion terms, although much slower than at
the physical point. We get:

X3(ρ = 0.28) = −68.4± 0.3 , Y3(ρ = 0.28) = −14.41± 0.03 . (8)

The uncertainty due to the truncation of the series has been determined from the difference
of the last two expansion orders including a safety factor of 5. At 2-loop order this approach
leads to a conservative error approximation.

Using the on-shell masses mc = 1.3 GeV and mb = 4.7GeV and setting the renormalization
scale µs = mb, we find

Γ (mb, mc) = Γ0X0

�

1− 1.72
αs

π
− 13.09

�αs

π

�2
− 162.82

�αs

π

�3�

, (9)

Q1(mb, mc) = Γ0m2
bY0

�

1− 1.61
αs

π
− 12.83

�αs

π

�2
− 168.34

�αs

π

�3�

. (10)

As expected we find a bad convergence of the perturbative series using the on-shell scheme for
the quark masses. To mitigate this problem various so-called threshold masses have been pro-
posed. We want to focus on the scheme used for the latest extraction of |Vcb|. Here, the bottom
mass is expressed in the kinetic scheme, while the charm quark is expressed in the MS scheme
at the scale µc = 3GeV. With the input values mkin

b = 4.526GeV and mc(3GeV) = 0.993GeV,
we find

Γ (mkin
b , mc(3GeV)) = Γ0X0



1− 1.67
α(4)s

π
− 7.25

�

α(4)s

π

�2

− 28.6

�

α(4)s

π

�3


 , (11)

Q1(m
kin
b , mc(3GeV)) = Γ0Y0

�

mkin
b

�2



1− 1.83
α(4)s

π
− 8.45

�

α(4)s

π

�2

− 34.7

�

α(4)s

π

�3


 ,

(12)
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Figure 2: The O(α3
s ) contribution to the total decay rate b→ s`ν (left) and its first

q2-moment (right) for different expansions depths in δ.

where µs = mkin
b is used. Note that the conversion to the kinetic scheme also contains the

renormalization of the HQET parameters µπ and ρD, which formally only enter at order 1/m2
b

and 1/m3
b respectively. The scale dependence of the two quantities can be studied in Fig. 3.

One observes a much better behavior of the perturbative series and a reduced dependence on
the renormalization scale.

The results for the total cross section together with the improvement of the relation be-
tween the on-shell and kinetic mass to O(α3

s ) have recently been used to update the inclusive
determination of |Vcb| [5]

|Vcb|= 42.16(30)th(32)ex p(25)Γ × 10−3 . (13)

The inclusion of the higher order calculations resulted in a small shift of the central value and
a reduced theory uncertainty. Especially the uncertainty due to the width Γ was halved.

The heavy daughter limit allows us also to estimate the O(α3
s ) correction to the b→ u`ν`

decay by setting δ→ 1:
X u

3 = −202 ± 20 , (14)

where the relative 10% uncertainty is estimated for unknown higher δ terms in the expansion.
We can study the convergence of the perturbative series also in this case. We use the exact
one and two loop results in the massless limit from Ref. [26] and the three loop correction
estimated above to derive the total rate for b→ u`ν`

Γb→u(m
kin
b , mc(3 GeV)) = Γ0X0

�

1− 0.27
α(4)s

π
+ 4.0

�

α(4)s

π

�2

+ 95.4

�

α(4)s

π

�3 �

. (15)

We observe an apparent worse behavior of the αs expansion compared to b → c. Note that
the result depends in this case also on the Weak-Annihilation scale entering in the Wilson
coefficient of ρD at order 1/m3

b. We set µWA = mkin
b /2.

If we specify the color factors to QED and set δ = 1−me/mµ ≈ 0.005 we obtain a prediction
for the muon lifetime τµ via

1
τµ
≡ Γ (µ−→ e−νµνe) =

G2
F m5

µ

192π3
(1+∆q) . (16)

Precise measurements of the muon lifetime together with accurate QED predictions therefore
allow the extraction of the Fermi constant GF . The various correction terms, see for example
Ref. [27] for a review, are usually parametrized via

∆q =
∑

i≥0

∆q(i) . (17)
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Figure 3: The dependence on µs of the total rate Γ (left) and the first q2-moment Q1
(right) for different orders in the strong coupling constants with the bottom quark
expressed in the kinetic scheme and the charm mass in the MS scheme. The scale of
the charm quark is set to µc = 3 GeV.

We find for the QED corrections

∆q(3) ≈
�

α(mµ)

π

�3

(−15.3± 2.3) , (18)

where the error is estimated from the convergence properties at 1- and 2-loop order for which
exact calculations are available [28–30]. This translates to a shift in the muon lifetime of
∆τµ ≈ (−9± 1)× 10−8µs. Comparing this with the current experimental value given by
τµ = (2.1969811 ± 0.0000022)µs [31], we see that the new corrections are two orders of
magnitude smaller than the current experimental uncertainty. A new extraction of the Fermi
constants therefore needs an improvement of the experimental data.

4 Conclusions

In these proceedings we reviewed the calculation of the O(α3
s ) corrections to the process

b → c`ν retaining finite charm quark effects through an expansion around the equal mass
case obtained in Ref. [10]. Furthermore, we showed an extension of our method to inclusive
q2 moments, which can be used to further constrain the global fits from which also |Vcb| is
extracted. We showed that the expansions converge fast at the physical point and can even
be extended down to δ → 1. Although we find a badly converging prediction using the on-
shell masses for charm and bottom, the predictions are improved by changing into the kinetic
scheme for the bottom quark. Since the knowledge of other moments, like moments of the
lepton energy or the hadronic mass, is desireable for the global fits we plan to extend our cal-
culation. After specifying our results to QED we also obtain O(α3) predictions for the muon
decay.
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