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Abstract

We present the computation of the massless three-loop ladder-box family with one ex-
ternal off-shell leg using the Simplified Differential Equations (SDE) approach. We also
discuss the methods we used for finding a canonical differential equation for the two
tennis-court families with one off-shell leg, and the application of the SDE approach on
these two families.
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1 Introduction

We are living in very interesting times to be a particle physicist. The ever-increasing accu-
racy of the experimental measurements and the future runs of LHC, HL-LHC and new collider
experiments will demand the most precise theoretical predictions for their interpretation. Pos-
sible small deviations between experiment and theory will make apparent the existence of new
phenomena and will dethrone once and for all the Standard Model, which is already facing ex-
istential issues due to its incompatibility with astrophysical observations (Dark Matter/Energy)
and its own components (Neutrino Oscilations).

From the theory point of view, the high-precision predictions can be obtained using Pertur-
bative Quantum Field Theory. Within this framework, the current frontier for 2→ 2 scattering
processes stands at N3 LO, where the computation of three-loop Feynman Integrals (FI) is de-
manded. From these FI, all the families with massless internal and external particles have
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q2q4

q1 q3

(a) In the standard notation.

p3p12 − xp1

xp1 p4

(b) In the SDE notation.

Figure 1: The Feynman graph of the three-loop massless ladder-box family with one
off-shell leg. All the external particles are assumed incoming.

been calculated [1–4, 7] and have been very recently used for the computation of 3-loop 4-
point Amplitudes (for the first time in QCD) for the processes qq̄→ γγ [5] and qq̄→ qq̄1 [6].
As it regards the massless families with one external off-shell leg, which are relevant for pro-
cesses like e+e−→ γ∗→ 3 j, pp→ Z j and pp→ H j, only one has been calculated [7,8], while
no progress has been made on the computation of the families with two off-shell legs so far.

The modern approach for computing FI is using the method of Differential Equations (DE)
[9–12], which is utilized within the framework of Dimensional Regularization (d = 4 − 2ε)
and the FI are computed as a Laurent expansion in ε. This method takes advantage of the fact
that the FI are functions of the Mandelstam variables, thus one can differentiate with respect to
them, and that any FI of a family can be written as a linear combination of a finite basis, called
Master Integrals (MI), which is implied by the Integration-By-Parts relations (IBP) [13,14]. The
basis of MI is not unique and a proper choice of it, in such a way such it consists MI that are Pure
Functions2 [15], leads to a DE of the so-called Canonical Form [15]. This DE is ε−factorized,
Fuchsian and the residue matrices are purely numerical, thus can be iteratively solved at any
order on ε.

In the next sections we use the Simplified Differential Equation approach (SDE) [16, 18],
which is a variant of the DE method, combined with a UT basis [19] in order to solve the
massless ladder-box family with up to one leg off-shell. Within the SDE the external momenta
are parameterized in terms of x , a dimensionless parameter which is introduced in such a way
such to capture the off-shellness of an external leg, and the DE is created by taking derivatives
with respect to x . An extra feature of the SDE is that one can almost for free obtain the
solution for the same family with one external massive leg less, by taking the x → 1 limit. We
also discuss the methods we used for obtaining a DE of canonical form for the two tennis-court
families with one off-shell leg.

2 Three−loop massless ladder-box with up to one off-shell leg

2.1 Massless ladder-box with one off-shell leg

This family is described by the Feynman graph of the Figure 1 and contains a set of 83 MI,
as we found using Kira 2.0 [21] and FIRE6 [22, 23]. In this computation we adopt the
notation for the kinematics and the UT basis from [8], where this family was first studied. The
class of FI describing this family can be expressed via the following expression

Ga1,...,a15

�

{q j},ε
�

=

∫

� 3
∏

r=1

dd lr

iπd/2

�

e3εγE

Da1
1 . . . Da15

15

, with d = 4− 2ε , (1)

1Where the initial and the final state quarks can have different flavour.
2In the following we will refer to this basis as UT basis
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where D11, . . . , D15 are propagators coming from Irreducible Scalar Products (thus for them we
have {a11, a12, a13, a14, a15} ≤ 0), and the chosen parametrization for the propagators is3

D1 = l2
1 , D2 = l2

2 , D3 = l2
3 , D4 = (l1 − l2)

2 , D5 = (l2 − l3)
2,

D6 = (l3 + q2)
2 , D7 = (l1 + q23)

2 , D8 = (l2 + q23)
2 , D9 = (l3 + q23)

2,

D10 = (l1 + q123)
2 , D11 = (l1 + q2)

2 , D12 = (l2 + q2)
2,

D13 = (l2 + q123)
2 , D14 = (l3 + q123)

2 , and D15 = (l1 − l3)
2.

(2)

We define the Mandelstam variables from the external momenta (q2
1 = q2

2 = q2
3 = 0 and

q2
4 = m2) using the notation

q2 · q3 = s/2 , q1 · q3 = t/2 , q1 · q2 = (m
2 − s− t)/2 . (3)

In order to apply the SDE approach we chose the following one x−parametrization

q1→ x p1 , q2→ p3 , q3→ p4 , q4→ p12 − x p1 with p2
1 = p2

2 = p2
3 = p2

4 = 0 , (4)

where the initial invariants of (3) are now parametrized in terms of x and the Mandelstam
variables of the on-shell momenta (s12 = p2

12 and s23 = p2
23)

s = s12 , t = xs23 , m2 = (1− x)s12 , (5)

and x is introduced in 3 propagators (D10, D13, D14).
Differentiating with respect to x and using the UT basis of [8] and the IBP relations we

obtained a canonical DE

∂xg= ε

� 4
∑

i=1

Mi

x − li

�

g , (6)

with the four letters being li = {0, 1, s12/(s12 + s23),−s12/s23}. We solve the DE up to weight
six on ε and in the Euclidean region {0 < x < 1, s12 < 0, s12 < s23 < 0}, where the FI are free
of branch cuts. The solution has the following form

g=ε0b(0)0 + ε
�∑

GiMib
(0)
0 + b(1)0

�

+ ε2
�∑

Gi jMiM jb
(0)
0 +

∑

GiMib
(1)
0 + b(2)0

�

+ . . .

+ ε6
�

b(6)0 +
∑

Gi jklmnMiM jMkMlMmMnb(0)0 +
∑

Gi jklmMiM jMkMlMmb(1)0

+
∑

Gi jklMiM jMkMlb
(2)
0 +

∑

Gi jkMiM jMkb(3)0 +
∑

Gi jMiM jb
(4)
0 +

∑

GiMib
(5)
0

�

,

(7)

where the matrices b(i)0 are the boundaries and Gi , ...,Gi jklmn are Goncharov poly-logarithms
[24] of weight 1, . . . , 6, respectively, with argument x and letters from the set li . For the
manipulation of these poly-logarithms we have used PolyLogTools [25].

As it regards the calculation of the boundary conditions, we start by taking advantage of the
fact that some MI are already known in closed form and thus we can directly obtain boundary
conditions for them. Afterwards, we use the fact that if for a basis element its leading regions
contributing to its asymptotic limit [26–30] x → 0 are of the form xα+βε with α ≥ 1 its
boundary should vanish. Then by comparing the regions found by asy with that found by the
resummation matrix method 4 we obtain relations between different boundaries. In fact, we
obtain two kinds of relations [7,19]. The first of them we call it pure relations because contain
only boundaries of the basis elements, while the second of them we call it impure due to the
fact that are relations between boundaries and asymptotic limits. In the end, we are left with

3from now on we use the abbreviation qi... j = qi + · · ·+ q j and pi... j = pi + · · ·+ p j .
4For an earlier use of the Jordan decomposition method see also [31,32].
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some regions to calculate in order to determine all the boundaries, which we do so by using
standard expansion-by-regions techniques5.

We crossed-checked our results with the ones from [8] and we found perfect agreement
for all the MI.

2.2 Massless ladder-box

p3p2

p1 p4

Figure 2: The Feynman graph of the three-loop massless ladder-box family.

From the solution of the ladder-box with one off-shell leg, by taking the x → 1 limit within
the SDE [7, 18], we also obtain the solution for a UT basis of the massless ladder-box family.
The procedure for obtaining this solution is the following

1. Expand the solution in terms of log(1− x):

g=
∑

n≥0

εn
n
∑

i=0

1
i!

c(n)i logi(1− x) . (8)

2. From the above expansion define the regular part of g at x = 1 and from it the truncated
part:

greg =
∑

εnc(n)0 and gt runc = greg

�

�

x=1
. (9)

3. Define the resummation matrix R1 and from it the numerical matrix R10:

R1 = eεM1 log(1−x) = S1eεD1 log(1−x)S−1
1 and R1

(1−x)aiε→0
−−−−−−−→ R10 . (10)

4. Find the x → 1 limit by acting R10 to gt runc:

gx→1 = R10gt runc . (11)

5. Reduce the number of the basis elements to that of the MI of the massless ladder-box
using the property R2

10 = R10 and/or IBP.

For the FI of this family we have chosen the following normalization

Ga1,...,a15

��

p j

	

,ε
�

= (−s12)
3ε

∫

� 3
∏

l=1

dd kl

iπd/2

�

e3εγE

Da1
1 . . . Da15

15

, (12)

where the propagators are obtained by setting x = 1 to the propagators of the massive fam-
ily. We compared analytically our results with the ones given by [2] and numerically with
pySecDec [33] in the Euclidean region. In both cases, we found perfect agreement.

5Meaning calculating the hard regions in the momentum-space while the soft regions in the Feynman parameter
representation.
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q2 q1

q3 q4

(a) The F2 family

q1 q4

q2 q3

(b) The F3 family

Figure 3: The Feynman graphs of the two tennis-court families.

3 Canonical DE construction for the two tennis-court families

For the completion of the computation of all the massless three-loop four-point planar MI with
one external massive particle, apart from the ladder-box family one also needs to calculate
the MI of the two massless tennis-court families with one off-shell leg (which are depicted in
Figure 3). The first of them contains 117 MI and we denote it as F2, while the second of them
contains 166 MI and we denote it as F3. Both families have the same letters with the ladder-
box family. In this section we briefly present the methods that led us to the construction of a
UT basis for the two tennis-court families. In total (in both families) there exist 91 new MI
and for finding their corresponding UT basis element we used three methods.

One of the methods is the Magnus Exponential [34] method applied to the DE derived
by differentiating with respect to the Mandelstam variables, which we used for some lower-
sector (till 7 propagators) MI6. For some intermediate-sector (till 9 propagators) MI we used
the DlogBasis [4] package combined with the SDE parametrization. More specifically, as we
know DlogBasis in order to find FI of d-log form depends on the Spinor-Helicity Formalism,
which can not be applied when we deal with massive external momenta. When one deals
with such problems the standard way to proceed is the decomposition of the external massive
momentum in terms of two (arbitrary) massless momenta [4], or the use of the Baikov repre-
sentation [35,36]. Another possible way of proceeding is the use of the SDE notation for the
propagators where by definition the external momenta that appear in them for 1-mass prob-
lems are massless7 and thus the spinor helicity parametrization can be applied. Thus while
the command [4]

SetParametrization[SpinorHelicityParametrization[{l1, l2, l3}, {a, b, c}, {q1, q2, q3}]] ,

doesn’t work when one uses the standard notation for the propagators with massive external
momenta, it correctly works when one uses the SDE notation for the propagators and massless
external momenta

SetParametrization[SpinorHelicityParametrization[{k1, k2, k3}, {a, b, c}, {p1, p2, p3}]] .
6It is important to mention here that an analytic reduction through FIRE6 was possible in a personal laptop (i7,

8-core, 16GB RAM) using the SDE approach which produced O(102) integrals for reduction in order to derive the
total DE, while this was not possible using the standard approach which produced O(103) integrals (the analytic
reduction was able only till sectors with 8 propagator).

7The same approach can be used for 2-mass problems introducing an extra y parameter beyond x in order to
catch the off-shellness of both masses.
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The last but most used method that we applied for the completion of the UT basis is the
Building-Blocks method [37]. In our study apart from the standard approach of using one-loop
UT MI (massless boxes, triangles and bubbles with up to three external massive particles) as
building blocks we also used UT basis elements from the massless planar double-box families
with up to three external off-shell legs [8,36,38].

In intermediate steps we checked that the chosen basis elements were indeed UT by semi-
numerical (keeping only x analytic) derivations of the DE. For sectors with multiple MI where
it is difficult to understand which of the chosen basis elements is not UT, a hint was given to
us by the C++ version of Fuchsia [39].

4 Conclusion

Within this contribution we presented the application of the SDE approach for the computation
of the massless ladder-box families with up to one external off-shell, which have been previ-
ously solved in the literature using the standard DE approach. We also briefly discussed the
methods that we used in order to obtain a DE of canonical form for the massless tennis-court
families with one external off-shell leg. These UT basis will be made available together with
the solutions of these families in a forthcoming publication.

At the moment we are working on the computation of the boundary conditions of the
tennis-court families. In fact, we have already solved the F2 family and we have developed
some new tools for the computation of boundaries within the SDE approach which are also
applicable in the F3 family. Moreover in order for our results to be available for fast evaluations
in phenomenological applications, we are currently working on the analytic continuation of
the solutions to the three physical regions

1) m2 > 0 , s ≥ m2 , t ≤ 0 , u≤ 0

2) m2 > 0 , s ≤ 0 , t ≥ m2 , u≤ 0

3) m2 > 0 , s ≤ 0 , t ≤ 0 , u≥ m2 .

of this scattering process.
As future work, encouraged by the efficiency of the SDE approach in dealing with three-

loop problems and the phenomenological applications of these problems, we are planning to
study the non-planar three-loop four-point massless families with one off-shell leg (15 fami-
lies), starting from the non-planar ladder-boxes (4 families).
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