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Abstract

In this contribution we consider the recent computation of the gauge coupling β-function
at four loops and the Yukawa matrix β-function at three loops in the most general, renor-
malizable and four-dimensional quantum field theory. Furthermore, we discuss ambigu-
ities and divergences arising in Yukawa matrix β-functions.
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1 Introduction

β-functions play a crucial role in phenomenological and theoretical studies of quantum field
theories (QFTs), such as the Standard Model of Particle Physics (SM). They determine the
dependence of coupling constants on the renormalization scale µ:

µ2 d
dµ2

αi

π
= βαi

({α},ε) . (1)

Here, αi can be any gauge, Yukawa or quartic scalar coupling, and the respective β-function
can depend on any coupling of the QFT, denoted by the set {α}.

In non-Abelian gauge theories β-functions can be negative, thus the gauge coupling van-
ishes for large scales and as a consequence the theory is asymptotically free. This property
was discovered during the search of a theory of strong interactions [1,2] and led to the estab-
lishment of SU(3) as the gauge group of Quantum Chromodynamics (QCD). Current precision
determinations of the strong coupling constant require the knowledge of five-loop corrections
to the QCD β-function [3–5].

There are further applications beyond pure QCD, such as the study of gauge coupling
unification or the stability of the electroweak vacuum. To this end, β-functions for all couplings
of the SM or theories beyond it are required. While two-loop β-functions for the most general
four-dimensional QFT have been known for almost four decades [6–9], higher orders only
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became available recently. The gauge coupling β-function for the most general QFT has been
computed at three loops [10, 11] and this year even the four-loop gauge coupling and three-
loop Yukawa β-functions have become available [12,13].

In the following we discuss the computation of the general four-loop gauge coupling and
three-loop Yukawa β-functions and ambiguities as well as divergences arising in Yukawa β-
functions and give a brief outlook into possible future developments.

2 β-functions at 4–3–2-loop order

In the spirit of the work on the general two-loop β-functions, Ref. [11] derives a basis of
tensor structures for the gauge coupling β-function at four loops, the Yukawa β-function at
three loops and combines them with the existing two-loop tensor structures for the quartic
coupling β-function. This 4–3–2-loop ordering is motivated by Osborn’s equation [14–18]:1

∂IA= TI Jβ
J . (2)

Here the derivative w.r.t. I denotes the derivative w.r.t. the couplings of the QFT under consid-
eration and A is a scalar function consisting of all independent contractions of Yukawa matrices,
quartic scalar couplings and colour generators, for example:

Ã⊃ a(3l)
10 + a(3l)

11 . (3)

Fermion-scalar vertices correspond to Yukawa tensors and gauge-fermion vertices to the gauge
generators of the fermions. Gauge couplings themselves are identified with the gauge boson
lines.2 The derivative can be denoted in a pictorial way by removing the corresponding cou-
pling from the tensor structure:

∂I = + 2 ,

∂I = + 2 . (4)

Thus leading to

∂I Ã⊃ a(3l)
10

 

+ 2

!

+ a(3l)
11



 + 2



 . (5)

Similarly, the two objects on the r.h.s of the equation, TI J and β J , consist of tensor struc-
tures with two and one open index, respectively. The β J are the gauge, Yukawa and quartic
β-functions we are interested in. The tensor structures relevant for the two structures in A
shown above are given by

TI J ⊃ t(1l)
1 + t(2l)

4 (6)

1For the 3–2–1-loop ordering see [19].
2For a more detailed discussion of the diagrammatic notation see [20].
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and

β J ⊃ g(2l)
6 + g(2l)

7 (7)

+y(1l)
1 + y(1l)

2 . (8)

Identifying tensor structures on the two sides of Osborn’s equation, we obtain 4 equations for
the coefficients:

a(3l)
10 = t(1l)

1 g(2l)
6 , a(3l)

11 = t(1l)
1 g(2l)

7 ,

2a(3l)
10 = t(2l)

4 y(1l)
1 , 2a(3l)

11 = t(2l)
4 y(1l)

2 , (9)

which can be solved for

g(2l)
7 y(1l)

2 = g(2l)
6 y(1l)

1 . (10)

Thus, Osborn’s equation connects coefficients of two-loop gauge coupling β-function with
coefficients in the one-loop Yukawa β-function. Going to higher orders, the equations connect
L-loop gauge to (L − 1)-loop Yukawa and (L − 2)-loop quartic β-function coefficients. This
feature can be used in two ways; Either as a cross-check of explicit calculations or as a way to
determine additional coefficients in the general result from already-known ones.

Starting from three loops for the Yukawa β-function and four loops for the gauge β-
function, non-trivial contributions from fermionic loops with an odd number of γ5 arise in
chiral theories like the SM. Sample tensor structures are given by:

While the three-loop Yukawa β-functions can be computed by treating γ5-odd traces as in four
dimensions, this is not the case for the four-loop gauge β-functions. Here, sub-divergences
appear in the relevant Feynman diagrams and thus a D-dimensional treatment would be nec-
essary. However, Osborn’s equation provides us with a way to resolve this issue without the
need to actually solve the "γ5-problem". Observe, that the two sample tensor structures above
arise from the derivative of

w.r.t. gauge or Yukawa couplings. Thus their coefficients are related. While no guarantee
exists that this is the case for all γ5-odd coefficients, at least at the 4–3–2-loop order all γ5-
odd gauge β-function coefficients are related, miraculously, to the γ5-odd Yukawa β-function
coefficients [21].

With the γ5-odd β-function coefficients fixed, the respective tensor structures can be eval-
uated for the SM. The γ5-even contributions can be calculated by dropping traces with an odd
number of γ5. These contributions have been computed in Ref. [22] and combined with the
γ5-odd contributions, finalizing the first computation of four-loop β-functions in a chiral gauge
theory.
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As a complete parametrization of the gauge–Yukawa–scalar β-functions at 4–3–2-loop or-
der is available, results in specific models can be used to fix the free coefficients. Combining
the four-loop gauge coupling β-functions in the SM, the three-loop Yukawa β-functions in the
SM and 2HDMs [23,24] with the WCCs fixes the vast majority of coefficients. However, some
coefficients remain unconstrained and thus additional models have to be considered. Two
independent calculations using different toy models, Refs. [12] and [13], have recently been
completed, fixing the remaining coefficients and, as a consequence, extending the general
results to 4–3–2-loop order.

Our results have been implemented in the program RGBeta [25], which allows the user
to specify a model and returns the respective β-functions. The β-functions can easily be im-
plemented in C++ programs using the template library RGE++ [26].

3 Ambiguities in Yukawa β-functions

Starting from three loops, Yukawa and scalar β-functions are ambiguous and not necessarily
finite anymore. This was first discovered in the context of the Yukawa matrix β-functions in
the SM [23] and 2HDMs [24].

The appearance of ambiguities can be traced back to the need to take square roots of
complex matrices. They are necessary to compute fermion and scalar wave-function renor-
malization constants. In the fermionic case, these are given by

Z f = 1− Kε
�

Æ

Z f
†
Σ(Q2)

Æ

Z f

�

, (11)

where the operator Kε takes the divergent part and Σ(Q2) is the fermion self-energy. Square
roots of matrices can be defined in multiple, equivalent ways:

Z f =
Æ

Z f
†Æ

Z f =
�

U ˆÆZ f

�†
U ˆÆZ f . (12)

Here U is a unitary matrix, possibly containing poles in ε. Different choices of U lead to the
same Z f , but different anomalous dimensions:

γ f =
Æ

Z f
−1
µ

d
dµ

Æ

Z f = U† ˆÆZ f

−1�

µ
d

dµ
ˆÆZ f

�

U + U†µ
d

dµ
U . (13)

As the anomalous dimensions of fermion fields enter Yukawa β-functions these also depend
on the choice of U . Simply choosing U = 1 leads to Hermitian square roots, but divergent
Yukawa matrix β-functions.

It was proven, that the divergences in the anomalous dimensions are tightly connected
to global symmetries of the kinetic terms of fermions and scalars and are the sole source of
divergences in the β-functions [27]:

RG-finiteness

The divergent part of any set of MS/MS RG functions (βI , γ) satisfy

γ(n) ∈ gF and β
(n)
I = −

�

γ(n) g
�

I , n≥ 1 .

This property of the RG functions is referred to as RG-finiteness.

Here the superscript (n) denotes the term proportional to ε−n and gF is the Lie algebra asso-
ciated to the global symmetry group of the kinetic terms.
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Working with ambiguous (or even worse, divergent) β-functions is, at best, inconvenient,
thus having an unique prescription for a finite β-function is desirable. The framework of
the local RG offers a solution to this, the so-called B-function, related to the conventional
β-function by [28]

BI = βI − (υ g)I . (14)

B is unique, while υ and β depend on the choice of square roots. In Ref. [27] υ was computed
for the choice of Hermitian square roots at three loops and the results presented in Refs. [12,
13] are compatible with this choice.

4 Conclusion and Outlook

Recently the general gauge coupling and Yukawa matrix β-functions have been computed
at four and three loops, respectively. These results rely on Osborn’s equation for fixing the
non-trivial γ5 contributions to the gauge coupling β-function, as well as on the proper under-
standing of ambiguities and divergences in Yukawa matrix β-function.

With the β-functions available at 4–3–2-loop order, the next step is to derive a basis of
tensor structures and the relations between the coefficients at 5–4–3-loop order. This would
allow the determination of the three-loop quartic β-function and the investigation of the γ5-
odd contributions at this order. Should the miracle repeat itself, a computation of the general
β-functions at 5–4–3-loop order is, in principle, feasible. Furthermore, it would be interesting
to study if Osborn’s equation imposes constraints in pure gauge theories at high loop orders.

Acknowledgements

We thank Joshua Davies and Anders Eller Thomsen for collaboration on the discussed topics
and for carefully reading the manuscript.

Funding information FH acknowledges support by the Alexander von Humboldt founda-
tion. This document was prepared using the resources of the Fermi National Accelerator Labo-
ratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab
is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-
07CH11359.

References

[1] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Non-Abelian Gauge Theories, Phys. Rev.
Lett. 30, 1343 (1973), doi:10.1103/PhysRevLett.30.1343.

[2] H. David Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett.
30, 1346 (1973), doi:10.1103/PhysRevLett.30.1346.

[3] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Five-Loop Running of the QCD Coupling
Constant, Phys. Rev. Lett. 118, 082002 (2017), doi:10.1103/PhysRevLett.118.082002.

[4] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, The five-loop beta
function of Yang-Mills theory with fermions, J. High Energy Phys. 02, 090 (2017),
doi:10.1007/JHEP02(2017)090.

029.5

https://scipost.org
https://scipost.org/SciPostPhysProc.7.029
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1007/JHEP02(2017)090


SciPost Phys. Proc. 7, 029 (2022)

[5] T. Luthe, A. Maier, P. Marquard and Y. Schröder, The five-loop Beta function for a general
gauge group and anomalous dimensions beyond Feynman gauge, J. High Energy Phys. 10,
166 (2017), doi:10.1007/JHEP10(2017)166.

[6] M. E. Machacek and M. T. Vaughn, Two-loop renormalization group equations in a general
quantum field theory, Nucl. Phys. B 222, 83 (1983), doi:10.1016/0550-3213(83)90610-
7.

[7] M. E. Machacek and M. T. Vaughn, Two-loop renormalization group equations in a
general quantum field theory (II). Yukawa couplings, Nucl. Phys. B 236, 221 (1984),
doi:10.1016/0550-3213(84)90533-9.

[8] M. E. Machacek and M. T. Vaughn, Two-loop renormalization group equations in a general
quantum field theory, Nucl. Phys. B 249, 70 (1985), doi:10.1016/0550-3213(85)90040-
9.

[9] I. Jack and H. Osborn, General background field calculations with fermion fields, Nucl.
Phys. B 249, 472 (1985), doi:10.1016/0550-3213(85)90088-4.

[10] L. Mihaila, Three-loop gauge beta function in non-simple gauge groups, Proc. Sci. 197, 060
(2014), doi:10.22323/1.197.0060.

[11] C. Poole and A. Eller Thomsen, Constraints on 3- and 4-loop β-functions in a gen-
eral four-dimensional Quantum Field Theory, J. High Energy Phys. 09, 055 (2019),
doi:10.1007/JHEP09(2019)055.

[12] A. Bednyakov and A. Pikelner, Four-Loop Gauge and Three-Loop Yukawa Beta Func-
tions in a General Renormalizable Theory, Phys. Rev. Lett. 127, 041801 (2021),
doi:10.1103/PhysRevLett.127.041801.

[13] J. Davies, F. Herren and A. Eller Thomsen, General gauge-Yukawa-quartic β-functions at
4-3-2-loop order, J. High Energy Phys. 01, 051 (2022), doi:10.1007/JHEP01(2022)051.

[14] H. Osborn, Derivation of a four dimensional c-theorem for renormaliseable quantum field
theories, Phys. Lett. B 222, 97 (1989), doi:10.1016/0370-2693(89)90729-6.

[15] I. Jack and H. Osborn, Analogs for the c Theorem for Four-dimensional Renormalizable
Field Theories, Nucl. Phys. B 343, 647 (1990), doi:10.1016/0550-3213(90)90584-Z.

[16] H. Osborn, Weyl consistency conditions and a local renormalisation group equation for
general renormalisable field theories, Nucl. Phys. B 363, 486 (1991), doi:10.1016/0550-
3213(91)80030-P.

[17] I. Jack and H. Osborn, Constraints on RG flow for four dimensional quantum field theories,
Nucl. Phys. B 883, 425 (2014), doi:10.1016/j.nuclphysb.2014.03.018.

[18] F. Baume, B. Keren-Zur, R. Rattazzi and L. Vitale, The local Callan-Symanzik
equation: structure and applications, J. High Energy Phys. 08, 152 (2014),
doi:10.1007/JHEP08(2014)152.

[19] O. Antipin, M. Gillioz, J. Krog, E. Mølgaard and F. Sannino, Standard model vac-
uum stability and Weyl consistency conditions, J. High Energy Phys. 08, 034 (2013),
doi:10.1007/JHEP08(2013)034.

[20] I. Jack and C. Poole, The a-function for gauge theories, J. High Energy Phys. 01, 138
(2015), doi:10.1007/JHEP01(2015)138.

029.6

https://scipost.org
https://scipost.org/SciPostPhysProc.7.029
https://doi.org/10.1007/JHEP10(2017)166
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(84)90533-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1016/0550-3213(85)90088-4
https://doi.org/10.22323/1.197.0060
https://doi.org/10.1007/JHEP09(2019)055
https://doi.org/10.1103/PhysRevLett.127.041801
https://doi.org/10.1007/JHEP01(2022)051
https://doi.org/10.1016/0370-2693(89)90729-6
https://doi.org/10.1016/0550-3213(90)90584-Z
https://doi.org/10.1016/0550-3213(91)80030-P
https://doi.org/10.1016/0550-3213(91)80030-P
https://doi.org/10.1016/j.nuclphysb.2014.03.018
https://doi.org/10.1007/JHEP08(2014)152
https://doi.org/10.1007/JHEP08(2013)034
https://doi.org/10.1007/JHEP01(2015)138


SciPost Phys. Proc. 7, 029 (2022)

[21] C. Poole and A. E. Thomsen, Weyl Consistency Conditions and γ5, Phys. Rev. Lett. 123,
041602 (2019), doi:10.1103/PhysRevLett.123.041602.

[22] J. Davies, F. Herren, C. Poole, M. Steinhauser and A. Eller Thomsen, Gauge Coupling β
Functions to Four-Loop Order in the Standard Model, Phys. Rev. Lett. 124, 071803 (2020),
doi:10.1103/PhysRevLett.124.071803.

[23] A. V. Bednyakov, A. F. Pikelner and V. N. Velizhanin, Three-loop SM beta-
functions for matrix Yukawa couplings, Phys. Lett. B 737, 129 (2014),
doi:10.1016/j.physletb.2014.08.049.

[24] F. Herren, L. Mihaila and M. Steinhauser, Gauge and Yukawa coupling beta functions
of two-Higgs-doublet models to three-loop order, Phys. Rev. D 97, 015016 (2018),
doi:10.1103/PhysRevD.97.015016, [Erratum: Phys. Rev. D 101, 079903 (2020)].

[25] A. Eller Thomsen, Introducing RGBeta: a Mathematica package for the evaluation of renor-
malization group β-functions, Eur. Phys. J. C 81, 408 (2021), doi:10.1140/epjc/s10052-
021-09142-4.

[26] T. Deppisch and F. Herren, RGE++: A C++ library to solve renormalisation group
equations in quantum field theory, Comput. Phys. Commun. 270, 108151 (2022),
doi:10.1016/j.cpc.2021.108151.

[27] F. Herren and A. Eller Thomsen, On ambiguities and divergences in pertur-
bative renormalization group functions, J. High Energy Phys. 06, 116 (2021),
doi:10.1007/JHEP06(2021)116.

[28] J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, J. High
Energy Phys. 01, 184 (2013), doi:10.1007/JHEP01(2013)184.

029.7

https://scipost.org
https://scipost.org/SciPostPhysProc.7.029
https://doi.org/10.1103/PhysRevLett.123.041602
https://doi.org/10.1103/PhysRevLett.124.071803
https://doi.org/10.1016/j.physletb.2014.08.049
https://doi.org/10.1103/PhysRevD.97.015016
https://doi.org/10.1140/epjc/s10052-021-09142-4
https://doi.org/10.1140/epjc/s10052-021-09142-4
https://doi.org/10.1016/j.cpc.2021.108151
https://doi.org/10.1007/JHEP06(2021)116
https://doi.org/10.1007/JHEP01(2013)184

	Introduction
	-functions at 4–3–2-loop order
	Ambiguities in Yukawa -functions
	Conclusion and Outlook
	References

