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Abstract

We present analytical results for one-loop five-point master integrals with up to three
off-shell legs. The method of canonical differential equations along with the Simplified
Differential Equations approach is employed. All necessary boundary terms are given
in closed form, resulting to solutions in terms of Goncharov Polylogarithms of arbitrary
weight. Explicit results up to weight six will be presented.
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1 Introduction

Our best understanding of Nature in its most fundamental level is encoded in the Standard
Model (SM) of particle physics, written in the mathematical language of Quantum Field The-
ory. Currently, experimental data coming mostly from the realm of Cosmology, such as the
existence of dark matter, impose major challenges on our fundamental theories, since they
are not predicted by the SM. Thus, we have concrete experimental signs that the SM does not
suffice to explain Nature at its most fundamental level.

On the other hand, the SM reigns supreme when we compare its predictions to experi-
mental data coming from the LHC. Since collider physics remains the best way to explore the
validity of the SM predictions against experimental data, a new precision program has been
initiated in order to test our current understanding of particle physics with the highest possi-
ble precision, both from an experimental and a theoretical point of view [1]. Our hope is that
through the careful comparison of highly precise measured cross sections against equally pre-
cise theoretical predictions, deviations from the SM will be discovered in collider experiments,
leading to constraints on its possible extensions [2].
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It is estimated that the Run 3 of the LHC as well as its expected High Luminosity upgrade
will require from a theoretical standpoint at least Next-to-Next-to-Leading Order (NNLO) cor-
rections to the QCD dominated processes [2]. The current precision frontier at NNLO lies
at 2 → 3 processes. A key factor in the determination of theoretical predictions for these
processes is the calculation of the relevant two-loop Feynman integrals (FI). Despite the ever
increasing sophistication of computational packages such as FIESTA4 [3] and pySecDec [4]
dedicated to the numerical evaluation of FI, analytic results for FI are still important, especially
for physical regions of the phase space, where in many cases a direct numerical evaluation is
not possible.

Working in the framework of dimensional regularisation in d = 4− 2ε space-time dimen-
sions, it can be shown that FI satisfy so-called Integration-By-Parts (IBP) identities [5]. These
relations allow us to obtain a minimal set of FI known as Master integrals (MI), that need to
be computed for a specific scattering process. Regarding MI relevant for 2→ 3 NNLO calcula-
tions, all MI involving massless particles are known [6–12] and implemented in the C++ library
pentagon functions [13], all planar MI for processes involving one off-shell leg have re-
cently been calculated using a numerical [14] and an analytical [15] approach and even more
recently there has been important progress for some of the non-planar topologies involving
one off-shell leg, known as hexaboxes [16,17].

Despite these very important accomplishments, at some point we will have to consider
processes involving more external massive legs and massive propagators. This will require
the calculation of very complicated two-loop MI. In order to gauge the level of mathematical
complexity that these MI will present, it is instructive to study first their one-loop counterparts.
To that end, in this contribution we will present analytical results for one-loop five-point MI
with up to three off-shell legs and massless internal lines. All results are given in terms of
Goncharov Polylogarithms (GPLs), a class of special functions which is well understood by
now [18–21], up to transcendental weight six, although the computational approach that was
used allows one to trivially obtain higher weight analytical results.

2 Computational framework

The modern approach for computing MI analytically is through the use of the method of dif-
ferential equations (DE) [22–26]. After using IBP identities and identifying a basis G of MI,
one differentiates this basis with respect to all kinematic invariants

∂

∂ si j
G= A({si j},ε)G . (1)

In general the matrix A can be very complicated. The introduction of the canonical DE [27]
brought forth a revolution in the computation of MI [28]. This new approach suggests that
instead of using basis G, one can use a special basis, known as a pure basis of MI, g = TG for
which the DE has the following form, known as canonical form,

dg= ε
∑

a

d log (Wa) M̃ag . (2)

The functions Wa are known as letters of the so-called alphabet, which is the set of all Wa for a
specific family of MI. When Wa are rational functions of the differential variables, (2) is solved
by recursively integrating order-by-order in ε in terms of GPLs, that can be defined as iterated
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integrals in the following way

G(a1, a2, . . . , an; x) =

∫ x

0

dt
t − a1

G(a2, . . . , an; t) (3)

G(0, . . . , 0; x) =
1
n!

logn(x) . (4)

For five-point MI, achieving an analytical solution in terms of GPLs beyond weight three
is a non-trivial task. This is due to the fact that several of the letters Wa are algebraic func-
tions of the differential variables, thus prohibiting a direct integration in terms of GPLs. More
specifically, these algebraic letters consist of square roots arising from leading singularities of
massive three-point functions and the Gram determinant of the five-point external momenta.

A variant of the standard DE method, known as Simplified Differential Equations (SDE)
approach [29], has been shown to effectively circumvent the problem of algebraic letters in
many cases [15,30,31], thus allowing fully analytical solutions in terms of GPLs to be achieved.
In the SDE approach, we introduce an external parameter x in the external momenta and
derive the DE by differentiating with respect to only that parameter, regardless of the number
of scales of the scattering process. When this approach is applied on a pure basis g of MI, a
canonical SDE can be derived. In many cases the new letters W ′

b are fully rationalised in x ,
W ′

b = x − lb, yielding the form

∂xg= ε
∑

b

1
x − lb

Mb g . (5)

In what follows we will refer to lb as letters in the SDE approach. All kinematic dependence
is included in these lb functions, living the residue matrices Mb to consist solely of rational
numbers. The form of (5) allows for its solution to be trivially expressed in terms of GPLs,
assuming the necessary boundary terms are obtained. To do so, we employ the method of
expansion-by-regions [32], with which we compute the x → 0 limit for each pure basis ele-
ment.

3 Results

3.1 Integral families
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Figure 1: Top-sector MI for the pentagon families considered in this contribution.

The integral families considered in this contribution, whose top-sector diagrams are de-
picted in figure 1, are defined as follows

Ga1a2a3a4a5
=

∫

dd k1

iπ(d/2)
eεγE

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5

, d = 4− 2ε (6)
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with

D1 = −(k1)
2, D2 = −(k1 + q1)

2, D3 = −(k1 + q1 + q2)
2

D4 = −(k1 + q1 + q2 + q3)
2, D5 = −(k1 + q1 + q2 + q3 + q4)

2 . (7)

The kinematics for the three families are as follows,

• 1-mass:
∑5

i=1 qi = 0, q2
i = 0, i = 1,2, 4,5, q2

3 = m2
3 ,

• 2-mass:
∑5

i=1 qi = 0, q2
i = 0, i = 1,2, 4, q2

3 = m2
3, q2

5 = m2
5 ,

• 3-mass:
∑5

i=1 qi = 0, q2
i = 0, i = 2,4, q2

1 = m̄2
1, q2

3 = m2
3, q2

5 = m2
5 .

We introduce the following x-parametrization1

q1 = x p1, q2 = x p2, q3 = p123 − x p12, q4 = p4, q5 = −p1234 . (8)

The kinematics in this underline momentum parametrization is

• 1-mass:
∑5

i=1 pi = 0, p2
i = 0, i = 1, 2,3, 4,5 ,

• 2-mass:
∑5

i=1 pi = 0, p2
i = 0, i = 1, 2,3, 4, p2

5 = m2
5 ,

• 3-mass:
∑5

i=1 pi = 0, p2
i = 0, i = 2, 3,4, p2

1 = m2
1, p2

5 = m2
5 .

Introducing (8) results in a mapping between the kinematic invariants in the original momen-
tum parametrization, qi , and the underline momentum parametrization {x , pi} for each of the
three pentagon families.2

1-mass : s12 = S12 x2, s23 = S23 x − S45 x + S45, s34 = x
�

S12(x − 1) + S34

�

, s45 = S45,

s15 = S15 x , m2
3 = (x − 1)

�

S12 x − S45

�

(9)

2-mass : m2
3 = (x − 1)

�

S12 x − S45

�

, s12 = S12 x2, s23 = S23 x − S45 x + S45

s34 = m2
5(−x) +m2

5 + x
�

S12(x − 1) + S34

�

, s45 = S45, s15 = m2
5(−x) +m2

5 + S15 x

3-mass : s12 = S12 x2, s23 = x
�

m2
1(x − 1) + S23

�

− S45 x + S45,

s34 = m2
5(−x) +m2

5 + x
�

S12(x − 1) + S34

�

, s45 = S45,

s15 = x
�

m2
1(x − 1) + S15

�

+m2
5(−x) +m2

5, m̄2
1 = m2

1 x2, m2
3 = (x − 1)

�

S12 x − S45

�

.

3.2 Differential equations

Constructing pure bases for the pentagon families under consideration is by now a trivial
exercise. Following the ideas of [11,14], the top sector basis element at the integrand level is
of the form

ε2P11111
p

∆5
G̃11111 , (10)

where P11111 is the Baikov polynomial corresponding to the top sector integral G11111 for each
family, G̃11111 is the top sector integrand of each family and ∆5 = det[qi · q j] is the Gram
determinant of the five-point external momenta. The remaining pure basis elements can be
constructed through the study of the leading singularities of their corresponding diagrams
[22]. Using Azurite [33] and Kira2 [34] we can identify 13, 15 and 18 MI for the 1-mass,
2-mass and 3-mass pentagon families respectively.

1We use the abbreviations pi j = pi + p j and pi jk = pi + p j + pk and similarly for q later.
2We use the abbreviations si j = q2

i j , Si j = p2
i j .
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When considering five-point scattering with massless propagators, a number of square
roots of the kinematic invariants enter the DE of the corresponding pure bases. These square
roots originate from leading singularities of massive three-point functions, which are repre-
sented by square roots of the Källen function λ(x , y, z) = x2 − 2x y − 2xz + y2 − 2yz + z2

and from square roots of the Gram determinants of the five-point external momenta. The ex-
istence of these square roots makes the task of solving these canonical DE in terms of GPLs
quite challenging, and in some cases even impossible [35].

It turns out however, that for the families considered in this contribution, the SDE approach
can overcome these difficulties. Introducing the x-parametrization (8) rationalises all square
roots in terms of the differential variable x , allowing us to integrate the canonical DE and
express the final result in terms of GPLs. The canonical SDE for each of the three pentagon
families has the following form,

∂xg= ε

 

lmax
∑

i=1

Mi

x − li

!

g , (11)

where g is the pure basis for each family, Mi are the residue matrices corresponding to each
letter li and lmax is the length of the alphabet in x . The length of the alphabet for each of
the three families considered in this subsection is l1m

max = 11, l2m
max = 14, l3m

max = 19. For more
information on the structure of these alphabets, we refer the interested reader to [30,31].

The last ingredient that is missing to solve (11) are the boundary terms. To find them we
follow the techniques developed in [15,36]. We define the resummation matrix R as follows

R= SeεD log(x)S−1 , (12)

where S and D are matrices coming from the Jordan decomposition of the residue matrix
corresponding to l1 = 0, M1 = SDS−1. Having expressed the pure bases in terms of MI, g= TG,
we use the expansion-by-regions method implemented in the asy code which is shipped along
with FIESTA4 [3], to find their asymptotic limit for x → 0.

Gi =x→0

∑

j

x b j+a jεG
(b j+a jε)
i , (13)

where a j and b j are integers and Gi are the individual members of the basis G. As explained
in [15], we can construct the relation

Rb= lim
x→0

TG
�

�

�

O
�

x0+a jε
� , (14)

where b =
∑n

i=0 ε
ib(i)0 are the boundary terms that we need to compute. The right-hand-side

of (14) implies that, apart from the terms xaiε coming from (13), we expand around x = 0,
keeping only terms of order x0. This procedure allows us to fix all the necessary boundary
terms in closed form, thus allowing us to obtain analytical solutions of (11) in terms of GPLs
of arbitrary weight.

3.3 Solutions

In this contribution we provide solutions up to weight six for each of the considered pentagon
families, which can be written in the following compact form,

g= ε0b(0)0 + ε
�∑

GiMib
(0)
0 + b(1)0

�

+ ε2
�∑

Gi jMiM jb
(0)
0 +

∑

GiMib
(1)
0 + b(2)0

�

+ . . .

+ ε6
�

b(6)0 +
∑

Gi jklmnMiM jMkMlMmMnb(0)0 +
∑

Gi jklmMiM jMkMlMmb(1)0

+
∑

Gi jklMiM jMkMlb
(2)
0 +

∑

Gi jkMiM jMkb(3)0 +
∑

Gi jMiM jb
(4)
0 +

∑

GiMib
(5)
0

�

,

(15)
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were Gab... := G(la, lb, . . . ; x) represent the GPLs. The b(i)0 terms, with i indicating the corre-
sponding weight, consist of Zeta functions ζ(i), logarithms and GPLs of weight i which have
as arguments rational functions of the underline kinematic variables Si j .

For all pentagon families we have made heavy use of the Mathematica package
PolyLogTools [37] for the manipulation of the resulting GPLs. In Tables 1 and 2 we pro-
vide an analysis of our results for each family, regarding the number of GPLs that appear
in each transcendental weight, where the weight is counted as the number of li indices of
G(la, lb, . . . ; x). These numbers are obtained by gathering all GPLs that appear up to or-
der O(ε6) in each integral family, and distinguishing them according to their corresponding
weight. For comparison, we perform the same task for the top-sector basis element of each
family.

Table 1: Number of GPLs entering in the solution. Top-sector b.e. in parenthesis.

Family W=1 W=2 W=3 W=4
P1m 10 (2) 50 (21) 170 (99) 496 (339)
P2m 9 (0) 54 (16) 204 (106) 628 (406)
P3m 13 (0) 87 (24) 349 (172) 1115 (696)

Table 2: Number of GPLs entering in the solution. Top-sector b.e. in parenthesis.

Family W=5 W=6
P1m 1322 (959) 2983 (1924)
P2m 1728 (1254) 4341 (2656)
P3m 3145 (2228) 7849 (4656)

We observe a huge increase in the number of GPLs beyond weight 5, in comparison to lower
weights. Despite the fact that the top sector basis elements appear to have lower-weight GPLs,
we note that each top-sector basis element starts from O(ε3). We also provide numerical
results and timing obtained using handyG [38, 39] for the top-sector basis element of each
family for a Euclidean point in table 3.

Table 3: Numerical computation of GPLs.

Top-Sec Time (sec) Result
g13 1.90759 0.0944261ε3 + 0.31615ε4 + 0.666923ε5 + 1.09948ε6

g15 3.75112 −0.120811ε3 − 0.314547ε4 − 0.616424ε5 − 0.985647ε6

g18 9.27125 −0.0215131ε3 − 0.0332408ε4 − 0.0501992ε5 − 0.057848ε6

4 Conclusion

Through the calculation of pentagon families with up to three massive legs and massless prop-
agators, we have demonstrated the ability of the SDE approach in handling multiscale FI and
obtaining analytical results in terms of GPLs. We have presented solutions of the canonical
DE for each pentagon family up to weight six, but the closed form of the boundary terms al-
lows one to trivially obtain higher-weight solutions. We have also presented numerical results
and timings for the evaluation of our solutions in a Euclidean point. Obtaining fast numerical
results through analytical expressions in physical points is an open problem, due to the chal-
lenging task of analytically continuing the resulting GPLs when algebraic letters are present
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in the alphabet. In this contribution we have focused on integrals with massless propagators.
Recently a step forward has been made in the study of pentagon integral families involving
one internal mass using the SDE approach [31].
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