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Abstract

In this talk we discuss recent computations of the top quark mass dependence of QCD
amplitudes describing Higgs boson production in gluon fusion. We compute terms in
the expansion for a large top quark mass, which reduces the Feynman diagrams to prod-
ucts of massless integrals and massive tadpole integrals which contain the top mass
dependence. In particular we discuss the real and virtual corrections to double Higgs
production at NNLO, and the virtual corrections to single Higgs production at N3LO.
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1 Introduction

One of the numerous tasks of the Large Hadron Collider (LHC) is to characterize the structure
of the Standard Model’s (SM) scalar sector. The parameter λ governs triple and quartic Higgs
boson interactions, and is determined in the SM by the mass and vacuum expectation value
of the Higgs boson. A direct experimental measurement of λ will help determine if the SM’s
scalar sector is observed in nature, although such a measurement is very challenging [1,2].

It is therefore important to have a good theoretical understanding of processes which in-
volve a single Higgs boson and two Higgs bosons. Such processes tend to be dominated by
contributions with top quarks propagating in loops, due to the large value of the top quark’s
Yukawa coupling. Multi-loop amplitudes quickly reach a complexity which cannot currently
be handled in an exact manner, so we turn to approximation methods in order to study them.
In particular, here, we discuss expansions which consider the top quark mass to be larger
than any other scale involved in the problem. The results of such expansions, in addition to
providing a good description of amplitudes below the top quark threshold, can be combined
with information describing other kinematic regions, to produce approximations which de-
scribe amplitudes over a wider kinematic range, see for e.g. Refs. [3–5]. A description of the
large-mt expansion method is given in Section 2 and of some of its applications in Section 3.
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2 Large Mass Expansion (LME)

The comparatively large value of the mass of the top quark means that performing an expan-
sion in the limit mt →∞ leads to a sensible approximation of scattering amplitudes, particu-
larly for processes in which contributions due to top quarks dominate. Amplitudes involving
Higgs bosons are examples of such processes; the size of the top quark Yukawa coupling means
that contributions from other quark flavours are relatively unimportant. The leading term in
such an expansion yields the so-called “Higgs effective field theory” (HEFT), in which the top
quark is completely integrated out. Dependence on its mass appears only logarithmically in
the effective couplings of Higgs bosons and gluons. The goal of the computations discussed in
these proceedings is to include sub-leading terms of the LME, i.e., terms proportional to powers
of 1/m2

t .
Such an asymptotic expansion can be performed by the method of “expansion by sub-

graph”, which is conveniently implemented in the program exp [6, 7]. The procedure is to
identify all subgraphs of a given Feynman graph which contain the heavy scale (here, mt) and
expand them in their small quantities. The remaining propagators form the “co-subgraph”
which does not depend on the heavy scale. For the problem at hand, this means that each
Feynman graph is reduced to a sum of products of massless graphs and mt -dependent vacuum
graphs, after the expansion in the limit mt →∞. This procedure is depicted in Fig. 1. For the
subgraph identified on the first row, the propagators are expanded as follows:
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where the “· · · ” represent higher-order terms in the expansion. Within the square brackets,
the propagators do not carry external momenta q1 or q2, nor the loop momentum l2; there
is only a sum of one-loop vacuum integrals with tensor numerators. Such integrals can be
computed by the FORM [8] package MATAD [9], up to three-loop order. For computations which
require four-loop vacuum integrals we make use of FIRE [10], which we also use to perform
integration-by-parts reduction for the massless co-subgraphs. A more complete description of
the computational toolchain is given in the following section.

2.1 Computational Toolchain

For all computations, we begin by generating the necessary Feynman diagrams with qgraf [11].
From here, the packages q2e and exp [6,7] are used to convert the diagrams into a compatible
notation and to identify the relevant subgraphs and co-subgraphs, as described in Section 2.
Code is generated for the expansion to be performed by FORM [8], which also computes the
colour factors using the COLOR package [12]. Vacuum graphs up to three loops are computed
with the MATAD package [9], and four-loop vacuum graphs as well as the massless integrals
of the co-subgraphs are reduced to master integrals using FIRE [10]. For the computation of
phase-space integrals described in Section 3.1, we use LiteRed [13,14] and LIMIT [15].

3 Applications

In the following, we summarize some recent works which have used the LME method described
above. This includes an NNLO computation of the double-real and real-virtual corrections to

031.2

https://scipost.org
https://scipost.org/SciPostPhysProc.7.031


SciPost Phys. Proc. 7, 031 (2022)

Full graph Subgraph Co-subgraph × Expanded subgraph
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Figure 1: Starting from the full Feynman graph of the first column, we identify
the subgraphs which contain mt -dependent propagators. To perform the LME, the
subgraphs are expanded in the large-mt limit (denoted by the operator T ), leaving
only co-subgraphs which are independent of mt .

Figure 2: Forward-scattering diagrams which contribute to the real-real and real-
virtual corrections to NNLO double–Higgs boson production. The blue and green
dashed lines denote three- and four-particle cuts through the final state particles.

double–Higgs boson production in gluon fusion [16–18] in Section 3.1, and N3LO compu-
tations of the virtual corrections to single–Higgs boson production in gluon fusion [19] in
Section 3.2, as well as the decay of a Higgs boson into two photons [20] in Section 3.3.

3.1 NNLO real-radiation corrections to double Higgs boson production

In order to compute real-real and real-virtual corrections we make use of the optical theorem,
and compute forward-scattering diagrams which have cuts through the desired final state parti-
cles. The real-real corrections correspond to cuts through two Higgs bosons and two additional
particles, and the real-virtual corrections to cuts through two Higgs bosons and one additional
particle. Examples of such cuts are given in Fig. 2, where the three-particle cuts are shown by
blue dashed lines and four-particle cuts by green dashed lines. Some diagrams, such as the
first, admit both a three- and four-particle cut. To generate such diagrams an additional step
is required to post-process the output of qgraf, which can not itself generate only diagrams
containing specified cuts. For this purpose we use the program gen1.

After large-mt expansion, the diagrams of Fig. 2 yield the phase-space integrals shown in
Fig. 3. These integrals are reduced to a basis of master integrals by LiteRed after the partial
fractioning of linearly-dependent propagators by LIMIT. The master integrals are computed in
an expansion around δ = 1−4m2

H/s→ 0, which corresponds to the production threshold of the
Higgs boson pair. A deep expansion in δ is obtained efficiently through the use of differential
equations, starting from boundary values computed for the leading term in the expansion.

1A. Pak, Unpublished.
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Figure 3: Forward-scattering diagrams which contribute to the real-real and real-
virtual corrections to NNLO double–Higgs boson production. The blue and green
dashed lines denote three- and four-particle cuts through the final state particles.
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Figure 4: NNLO contributions to the total cross sections of the g g and gq channels.
The vertical black line shows the threshold at

p
s = 2mt . The curves show different

orders in the large-mt expansion, denoted by ρn = (m2
H/m

2
t )

n.

The total cross section at NNLO is given by

σ
(2)
i j = σ

(2)
i j,real +σ

(2)
i j,coll +σ

(2)
i j,virt , (2)

where i, j denote the contributing partonic channels, g g, gq, qq̄, qq, qq′, including also all
additional anti-quark and ghost channels. The collinear counterterms are computed through
the convolution of the LO and NLO cross sections with quark or gluon splitting functions. See
Section 2.5 of Ref. [18] for a detailed discussion. The virtual corrections have been computed
in Ref. [21,22]. After ultra-violet renormalization, the sum of contributions in Eq. (2) produces
a finite result.

Plots for successive orders of the large-mt expansion are shown, for the g g and gq chan-
nels, in Fig. 4. Below the top quark threshold the large-mt expansion converges well, partic-
ularly so close to the production threshold. Compared to the leading expansion term (ρ0),
which corresponds to the HEFT result (which has been previously computed in Ref. [23]),
including the sub-leading terms typically corrects the NNLO contributions by a factor of two.

3.2 N3LO virtual corrections to single Higgs boson production

For 2 → 1 processes, it is computationally feasible to compute virtual corrections at N3LO,
corresponding to four-loop order for loop-induced processes such as single–Higgs boson pro-
duction in gluon fusion, and Higgs boson decay into two photons (see Section 3.3). Here we
compute diagrams such as those shown in Fig. 5. The expansion proceeds in a straightforward
manner, as outlined in Section 2. We define the amplitude to be

A= 4αs(µ)
3π

TF

ν
δab

�

q1 ·q2 gµν − qν1 qµ2
�

h(ρ) , (3)

where q1, q2 are the momenta of the incoming gluons, a, b their colour indices, TF = 1/2, and
ν is the Higgs vacuum expectation value. After ultra-violet renormalization, the form factor
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Figure 5: Virtual corrections contributing to g g → H at N3LO.

h(ρ) still contains infra-red poles, however the poles of the rescaled form factor

F(ρ) = h(ρ)/h(1)(ρ) = 1+O(αs) (4)

are predicted to factorize and given in the literature [24]. We thus consider

log (F) = log (F)poles + log (F)finite (5)

and find that indeed log (F)poles is independent of ρ and agrees with Ref. [24], and we may
study the numerical impact of the N3LO corrections to log (F)finite. At a renormalization scale
µ= mt with an on-shell mt value of 173 GeV, we find that

log (F)finite =+ at [ + (11.07− 3.06i) + (0.07) + (0.004)]

+ a2
t [ + (22.59− 13.24i) + (1.02− 0.13i) + (0.07− 0.01i)]

+ a3
t [− (73.18+ 51.55i) + (7.61+ 0.85i) + (0.70− 0.14i)] , (6)

where the ρ0, ρ1 and ρ2 expansion terms have been displayed individually in round brackets.
We observe that the sub-leading terms in the large-mt expansion become increasingly impor-
tant at higher perturbative orders; at N3LO the ρ1 and ρ2 terms correct the ρ0 term by about
10% and 1%, respectively.

3.3 N3LO corrections to Higgs boson decay into photons

From a computational point of view, the decay process H → γγ is very similar to g g → H
discussed above in Section 3.2. The Feynman diagrams which contribute are a subset of those
of g g → H, i.e., those for which the external gluons (now photons) couple to a quark line
rather than internally propagating gluons. The first diagram of Fig. 5 is such an example. We
can therefore apply our existing machinery and reduction to master integrals to this process.
We define the partial decay width as

ΓH→γγ =
m3

H

64π
|A(ρ)| , (7)

and compute A(ρ) in the large-mt expansion. Unlike the form factor h(ρ) of g g → H, A(ρ) is
finite after ultra-violet renormalization.

For the top quark mass in the on-shell scheme, Fig. 6 shows the dependence on the renor-
malization scale of the NLO, NNLO and N3LO corrections, w.r.t. the leading order. At N3LO
the curve becomes slightly flatter, but it does not overlap with the NNLO curve.

The N3LO large-mt result can be combined with the NLO electroweak corrections [25] as
well as the NNLO corrections due to bottom and charm quark loops [26],

ΓH→γγ × 106GeV−1 = 9.2581|LO − 0.1502|NLO,EW + 0.1569|NLO,t + 0.0157|NLO,bc

+ 0.0029|NNLO,t + 0.0036|NNLO,bc − 0.0031|N3LO,t = 9.2838 . (8)

We find that the N3LO top quark corrections are about the same size as each of the NNLO
corrections shown in Eq. (8), but come with the opposite sign.
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Figure 6: The scale dependence of the large-mt expansions of the NLO, NNLO and
N3LO corrections to ΓH→γγ, w.r.t. the exact leading order. mt is in the on-shell scheme.
The vertical black line is at µ= mH .

4 Conclusion

In these proceedings, we have discussed the large-mt expansion and its application to several
scattering processes. For processes involving Higgs bosons, the size of the top quark Yukawa
coupling means that amplitudes with top quarks running in the loops contribute an important
part of the total cross sections. The expansion allows the effect of the top quark mass to be
well described below the threshold, and including sub-leading terms typically produces large
corrections w.r.t. the leading term alone, which corresponds to the commonly-used HEFT.

Such expansions can be performed in a semi-automated and systematic way, allowing us
to study multi-loop amplitudes which can not be computed in an exact manner, either analyt-
ically or numerically. As discussed in Section 1, these expansions form the input for various
approximation methods which combine information from various kinematic regions, in an at-
tempt to describe multi-loop amplitudes over a wider kinematic range than any one expansion
alone.

Acknowledgements

The work of JD was partly supported by the Science and Technology Facilities Council (STFC)
under the Consolidated Grant ST/T00102X/1.

References

[1] G. Aad et al., Search for the HH → bb̄bb̄ process via vector-boson fusion production using
proton-proton collisions at

p
s = 13 TeV with the ATLAS detector, J. High Energy Phys. 07,

108 (2020), doi:10.1007/JHEP07(2020)108.

[2] A. M. Sirunyan et al., Search for nonresonant Higgs boson pair production in final states
with two bottom quarks and two photons in proton-proton collisions at

p
s = 13 TeV, J.

High Energy Phys. 03, 257 (2021), doi:10.1007/JHEP03(2021)257.

[3] R. Gröber, A. Maier and T. Rauh, Reconstruction of top-quark mass effects in Higgs
pair production and other gluon-fusion processes, J. High Energy Phys. 03, 020 (2018),
doi:10.1007/JHEP03(2018)020.

031.6

https://scipost.org
https://scipost.org/SciPostPhysProc.7.031
https://doi.org/10.1007/JHEP07(2020)108
https://doi.org/10.1007/JHEP03(2021)257
https://doi.org/10.1007/JHEP03(2018)020


SciPost Phys. Proc. 7, 031 (2022)

[4] J. Davies, R. Gröber, A. Maier, T. Rauh and M. Steinhauser, Top quark mass dependence
of the Higgs boson-gluon form factor at three loops, Phys. Rev. D 100, 034017 (2019),
doi:10.1103/PhysRevD.100.034017.

[5] M. Czakon and M. Niggetiedt, Exact quark-mass dependence of the Higgs-gluon
form factor at three loops in QCD, J. High Energy Phys. 05, 149 (2020),
doi:10.1007/JHEP05(2020)149.

[6] R. Harlander, T. Seidensticker and M. Steinhauser, Corrections of to the decay of the Z boson
into bottom quarks, Phys. Lett. B 426, 125 (1998), doi:10.1016/S0370-2693(98)00220-
2.

[7] Th. Seidensticker, Automatic application of successive asymptotic expansions of Feynman
diagrams, arXiv:hep-ph/9905298.

[8] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453.

[9] M. Steinhauser, MATAD: a program package for the computation of MAssive TADpoles,
Comput. Phys. Commun. 134, 335 (2001), doi:10.1016/S0010-4655(00)00204-6.

[10] A. V. Smirnov and F. S. Chukharev, FIRE6: Feynman Integral REduction with modular arith-
metic, Comput. Phys. Commun. 247, 106877 (2020), doi:10.1016/j.cpc.2019.106877.

[11] P. Nogueira, Automatic Feynman Graph Generation, J. Comput. Phys. 105, 279 (1993),
doi:10.1006/jcph.1993.1074.

[12] T. van Ritbergen, A. N. Schellekens and J. A. M. Vermaseren, Group theory factors for Feyn-
man diagrams, Int. J. Mod. Phys. A 14, 41 (1999), doi:10.1142/S0217751X99000038.

[13] R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685.

[14] R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys.: Conf.
Ser. 523, 012059 (2014), doi:10.1088/1742-6596/523/1/012059.

[15] F. Herren, Precision Calculations for Higgs Boson Physics at the LHC - Four-Loop Corrections
to Gluon-Fusion Processes and Higgs Boson Pair-Production at NNLO, Ph.D. thesis, KIT,
Karlsruhe (2020), doi:10.5445/IR/1000125521.

[16] M. Steinhauser, J. Davies, F. Herren and G. Mishima, NNLO real corrections to g g → HH
in the large- mt limit, Proc. Sci. 375, 022 (2019), doi:10.22323/1.375.0022.

[17] J. Davies, F. Herren, G. Mishima and M. Steinhauser, Real-virtual corrections to Higgs
boson pair production at NNLO: three closed top quark loops, J. High Energy Phys. 05,
157 (2019), doi:10.1007/JHEP05(2019)157.

[18] J. Davies, F. Herren, G. Mishima and M. Steinhauser, Real corrections to Higgs boson pair
production at NNLO in the large top quark mass limit, J. High Energy Phys. 01, 049 (2022),
doi:10.1007/JHEP01(2022)049.

[19] J. Davies, F. Herren and M. Steinhauser, Top Quark Mass Effects in Higgs Boson Pro-
duction at Four-Loop Order: Virtual Corrections, Phys. Rev. Lett. 124, 112002 (2020),
doi:10.1103/PhysRevLett.124.112002.

[20] J. Davies and F. Herren, Higgs boson decay into photons at four loops, Phys. Rev. D 104,
053010 (2021), doi:10.1103/PhysRevD.104.053010.

031.7

https://scipost.org
https://scipost.org/SciPostPhysProc.7.031
https://doi.org/10.1103/PhysRevD.100.034017
https://doi.org/10.1007/JHEP05(2020)149
https://doi.org/10.1016/S0370-2693(98)00220-2
https://doi.org/10.1016/S0370-2693(98)00220-2
https://arxiv.org/abs/hep-ph/9905298
https://arxiv.org/abs/1707.06453
https://doi.org/10.1016/S0010-4655(00)00204-6
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1142/S0217751X99000038
https://arxiv.org/abs/1212.2685
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.5445/IR/1000125521
https://doi.org/10.22323/1.375.0022
https://doi.org/10.1007/JHEP05(2019)157
https://doi.org/10.1007/JHEP01(2022)049
https://doi.org/10.1103/PhysRevLett.124.112002
https://doi.org/10.1103/PhysRevD.104.053010


SciPost Phys. Proc. 7, 031 (2022)

[21] J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: Top quark mass effects at
NLO and NNLO, Nucl. Phys. B 900, 412 (2015), doi:10.1016/j.nuclphysb.2015.09.012.

[22] J. Davies and M. Steinhauser, Three-loop form factors for Higgs boson pair pro-
duction in the large top mass limit, J. High Energy Phys. 10, 166 (2019),
doi:10.1007/JHEP10(2019)166.

[23] D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Or-
der in QCD, Phys. Rev. Lett. 111, 201801 (2013), doi:10.1103/PhysRevLett.111.201801.

[24] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the
quark and gluon form factors to three loops in QCD, J. High Energy Phys. 06, 094 (2010),
doi:10.1007/JHEP06(2010)094.

[25] S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO computational techniques: The
cases and, Nucl. Phys. B 811, 182 (2009), doi:10.1016/j.nuclphysb.2008.11.024.

[26] M. Niggetiedt, Exact quark-mass dependence of the Higgs-photon form factor at three loops
in QCD, J. High Energy Phys. 04, 196 (2021), doi:10.1007/JHEP04(2021)196.

031.8

https://scipost.org
https://scipost.org/SciPostPhysProc.7.031
https://doi.org/10.1016/j.nuclphysb.2015.09.012
https://doi.org/10.1007/JHEP10(2019)166
https://doi.org/10.1103/PhysRevLett.111.201801
https://doi.org/10.1007/JHEP06(2010)094
https://doi.org/10.1016/j.nuclphysb.2008.11.024
https://doi.org/10.1007/JHEP04(2021)196

	Introduction
	Large Mass Expansion (LME)
	Computational Toolchain

	Applications
	NNLO real-radiation corrections to double Higgs boson production
	N3LO virtual corrections to single Higgs boson production
	N3LO corrections to Higgs boson decay into photons

	Conclusion
	References

