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Abstract

We review recent progress on operator mixing [1,2] in the light of the theory of canonical
forms for linear systems of differential equations and, in particular, of the Poincaré-
Dulac theorem. We show that the matrix A(g) = − γ(g)β(g) =

γ0
β0

1
g + · · · determines which

different cases of operator mixing can occur, and we review their classification. We
derive a sufficient condition for A(g) to be set in the one-loop exact form A(g) = γ0

β0

1
g .

Finally, we discuss the consequences of the unitarity requirement in massless QCD-like
theories, and we demonstrate that γ0 is always diagonalizable if the theory is conformal
invariant and unitary in its free limit at g = 0.
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1 Introduction

We reconsider [1,2] the operator mixing in massless QCD-like theories by exploiting the theory
of canonical forms [3, 4] for linear systems of differential equations, and in particular the
Poincaré-Dulac theorem [4]. We show that operator mixing is characterized by the structure
of the matrix A(g) = − γ(g)β(g) , where γ(g) is the anomalous dimension matrix and β(g) is the
beta function of the theory.

The problem of determining under which conditions the operator mixing reduces to the
multiplicatively renormalizable case has been addressed in [1] by means of the Poincaré-Dulac
theorem. This is the case (I) of the classification introduced in [1]. The remaining cases,
(II),(III) and (IV), of the aforementioned classification, where such a reduction is not actually
possible, have been discussed in [2], which also contains physical applications based on [14,
17,34,35].
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In the present paper we discuss the operator mixing as it has been worked out in [1,2] as
opposed to previous treatments.

It has been known for some time that changing renormalization scheme may provide sev-
eral advantages. For example, in the ’t Hooft renormalization scheme [5], all the coefficients
of the beta function, β(g) = −β0 g3−β1 g5+ · · · , but the first two, β0,β1, may be set to 0 by a
suitable holomorphic reparametrization of the gauge coupling. Moreover, the freedom to set
to any value the coefficients β2,β3, · · · has been exploited in various contexts [6–11], including
the supersymmetric one in relation to the exact NSVZ beta function [12]. As for β(g), also for
the anomalous dimension of a multiplicatively renormalizable operator, γ(g) = γ0 g2+· · · , it is
possible to set to 0 all the coefficients but the first one, γ0, by a similar [13] reparametrization
of the coupling.

In the mixing case the anomalous dimension is a matrix-valued function. A crucial quantity
that enters the operator mixing is the renormalized mixing matrix in the coordinate represen-
tation Z(x ,µ). Z(x ,µ) is determined by the quantity A(g) = − γ(g)β(g) by means of Eq. (3).
Consequently, in order to assess whether any simplification of the mixing structure may occur,
we exploit [1,2] holomorphic gauge transformations of the basis of operators that mix under
renormalization, under which A(g) transforms as a meromorphic connection [1,2]. Therefore,
the change of scheme that we refer to in our treatment of operator mixing is deeply different
from the aforementioned change of scheme of ’t Hooft type.

Another aspect that we are going to discuss is a unitarity constraint [2]. If we assume that
the theory is conformal and unitary at zero coupling in the gauge-invariant sector, as it should
be the case for a massless QCD-like theory, then the matrix γ0, and therefore also A0 =

γ0
β0

,
should always be diagonalizable and the cases (III) and (IV) of the classification above, where
A0 is not diagonalizable, are ruled out.

The approach to operator mixing based on the Poincaré-Dulac theorem allows us to study
in the most general case the UV asymptotics of the renormalized mixing matrix Z(x ,µ) [1,2],
which enters a number of applications of the renormalization group (RG), ranging from the
deep inelastic scattering [15] in QCD to the evalutation of the ratio ε′

ε [16–18] for the possible
implications of new physics, and to the constraints [14,19–24] to the eventual nonperturbative
solution of the large-N limit [25–28] of massless QCD-like theories.

The present paper is organized as follows: in section 2 we discuss the classification of
operator mixing based on the Poincaré-Dulac theorem, in section 3 we demonstrate that γ0 is
diagonalizable in a theory that is conformal and unitary at zero coupling, and finally in section
4 we state our conclusions.

2 Operator mixing and the Poincarè-Dulac theorem

A differential-geometry interpretation [1, 2] is crucial to exploit in the context of operator
mixing the theory of canonical forms for systems of differential equations and the Poincaré-
Dulac theorem.

Given a system of local operators Oi(x) that mix under renormalization, we interpret [1]
a change of operator basis, i.e. a change of renormalization scheme:

O′i (x) = Sik(g)Ok(x) (1)

as a holomorphic invertible gauge transformation S(g). In this context, the mixing matrix
Z(x ,µ) is seen as a Wilson line that transforms as:

Z ′(x ,µ) = S(g(µ))Z(x ,µ)S−1(g(x)) (2)
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for the gauge transformation S(g). Moreover, Z(x ,µ) is a solution:

Z(x ,µ) = P exp

�

∫ g(µ)

g(x)
A(g) d g

�

= P exp

�

−
∫ g(µ)

g(x)

γ(g)
β(g)

d g

�

(3)

of the differential system:

DZ(x ,µ) =
�

∂

∂ g
− A(g)

�

Z(x ,µ) = 0 . (4)

From Eq. (3) we see that the structure of Z(x ,µ), and therefore the structure of the operator
mixing, is determined by the matrix:

A(g) = −
γ(g)
β(g)

=
γ0

β0

1
g
+ · · · (5)

which is interpreted [1] as a meromorphic connection, with a simple pole at g = 0, that
transforms by the gauge transformation S(g) as:

A′(g) = S(g)A(g)S−1(g) +
∂ S(g)
∂ g

S−1(g) . (6)

2.1 The Poincarè-Dulac theorem for massless QCD-like theories

Once the above geometrical framework for operator mixing has been established, we are able
to discuss our application of the Poincaré-Dulac theorem.

Naively, given a linear system of differential equations of the kind (4), the Poincaré-Dulac
theorem establishes which type of simplifications can be made on the meromorphic connection
A(g) by means of holomorphic gauge transformations.

In a massless QCD-like theory the connection A(g) admits the expansion [1]:

A(g) = −
γ(g)
β(g)

=
1
g

�

A0 +
∞
∑

k=1

A2k g2k

�

. (7)

According to the Poincarè-Dulac theorem [4], A(g) can be set by a holomorphic invertible
gauge transformation in the canonical resonant form [2]:

A′(g) =
1
g

�

Λ+ N0 +
∑

k=1

N2k g2k

�

, (8)

where:

A0 = Λ+ N0 (9)

is upper triangular, with eigenvalues diag(λ1,λ2, · · · ) = Λ in nonincreasing orderλ1 ≥ λ2 ≥ · · · ,
and nilpotent part, N0, in normal Jordan form. The upper triangular nilpotent matrices N2k
satisfy the condition:

gΛN2k g−Λ = g2kN2k . (10)

This implies [2] that the only nonzero entries (N2k)i j are such that:

λi −λ j = 2k (11)
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for i < j and k a positive integer. Eq. (11) is called the resonance condition for the eigenvalues
of A0, and we refer to the terms N2k in Eq. (8) as to the resonant terms. A similar condition
also is satisfied by the nilpotent matrix N0:

gΛN0 g−Λ = N0 (12)

as a consequence of the Jordan normal form of A0.
Therefore, the Poincaré-Dulac theorem establishes under which conditions the connection

A(g) may be set in the form:

A′(g) =
Λ+ N0

g
(13)

by a holomorphic gauge transformation. In particular, a sufficient condition for all the resonant
terms N2k to be absent in Eq. (8) is that the eigenvalues of A0 satisfy [1]:

λi −λ j 6= 2k (14)

with k a positive integer. Remarkably, this condition can be easily verified a priori from the
only knowledge of the eigenvalues of A0 =

γ0
β0

, i.e. it is possible to test the condition (11)
performing a one-loop computation only:

If the condition (14) is satisfied for all the eigenvalues of A0, then A(g) = − γ(g)β(g) may be set in the
one-loop exact form (13) to all orders in perturbation theory for a choice of the operator basis.

Moreover, this analysis shows the crucial difference with respect to the multiplicatively renor-
malizable case: While in the multiplicatively renormalizable case it is always possible to re-
move from the perturbative expansion of A(g) all the coefficients different from γ0

β0
, in the

mixing case this is only possible if either the condition (14) is satisfied for all the eigenvalues
of A0 or (N2k) = 0 for all k ≥ 1.

2.2 Classification of operator mixing

We summarize the classification of operator mixing in [1,2]:

• (I) Nonresonant diagonalizable γ0
β0

:

The system in Eq. (4) of differential equations associated to the connection A(g) is
nonresonant and γ0

β0
is diagonalizable. For the system to be nonresonant, it is sufficient

that the eigenvalues of γ0
β0

satisfy:

λi −λ j 6= 2k (15)

with i ≤ j and k a positive integer.

For the system to be nonresonant, the necessary and sufficient condition is that in the
canonical form of Eq. (8) all the resonant terms vanish.

The sufficient condition for γ0
β0

to be diagonalizable is that all its eigenvalues are different.

• (II) Resonant diagonalizable γ0
β0

:

The system of differential equations is resonant and γ0
β0

is diagonalizable. For the system
to be resonant, a necessary condition is that for at least two eigenvalues it holds:

λi −λ j = 2k (16)

with i < j and k a positive integer.

In this case, a necessary and sufficient condition is that at least one N2k in the canonical
resonant form does not vanish.

The sufficient condition for γ0
β0

to be diagonalizable is as in the case (I).
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• (III) Nonresonant nondiagonalizable γ0
β0

:

The system of differential equations is nonresonant and γ0
β0

is nondiagonalizable.

The nonresonant condition is as in the case (I).

The necessary condition for γ0
β0

to be nondiagonalizable is that at least two of its eigen-
values coincide.

• (IV) Resonant nondiagonalizable γ0
β0

:

The system of differential equations is resonant and γ0
β0

is nondiagonalizable.

The resonant condition is as in the case (II).

The necessary condition for γ0
β0

to be nondiagonalizable is as in the case (III).

3 Unitarity constraint

We discuss the unitarity constraint [2] that rules out the cases (III) and (IV) of the classification
above.

We observe that conformal invariance and unitarity should apply to massless QCD-like
theories up to the order of g2 in perturbation theory. Indeed, since the beta function affects the
solution of the Callan-Symanzik equation [29,30] starting from the order of g4, massless QCD-
like theories are conformal invariant up to the order g2 [33]. Moreover, unitarity is certainly
satisfied in the free limit of massless QCD-like theories in the Hermitian gauge-invariant sector,
as unitary gauges exist where the theory is unitary for the gluon and matter fields and the
gauge-fixing ghosts decouple in the correlators of gauge-invariant operators.

We demonstrate in the following, exploiting unitarity and conformal invariance, that the
matrix γ0 is always diagonalizable in the gauge-invariant sector of massless QCD-like theories
and therefore the cases (III) and (IV) of our classification are ruled out.

To prove the previous statement, we work in the framework of conformal field theories
(CFTs) and we study the Callan-Symanzik equation satisfied by the 2-point correlators of Eu-
clidean Hermitian scalar primary conformal operators Gcon f (x) [2]:

x ·
∂

∂ x
Gcon f (x) +∆Gcon f (x) + Gcon f (x)∆

T = 0 , (17)

where ∆ is the matrix of the conformal dimensions.
The general solution of Eq. (17), in matrix notation, is [2]:

Gcon f (x) = 〈O(x)O(0)〉= e−∆ log
p

x2µ2Ge−∆
T log
p

x2µ2
, (18)

where G is a real symmetric matrix.
The scalar product of the theory is constructed by exploiting the operators/states corre-

spondence in CFTs [31,32]:

O(0)|0〉 = |Oin〉

〈Oout | = lim
x→∞

〈0|e2∆ log
p

x2µ2
O(x) . (19)

As a consequence, the scalar product in matrix notation is:

〈Oout |Oin〉 = lim
x→∞

〈0|e2∆ log
p

x2µ2
O(x)O(0)|0〉

= lim
x→∞

e2∆ log
p

x2µ2
e−∆ log

p
x2µ2Ge−∆

T log
p

x2µ2

= lim
x→∞

e∆ log
p

x2µ2Ge−∆
T log
p

x2µ2
. (20)
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In order to be well defined, the scalar product in Eq. (20) must be independent of the space-
time coordinates. Expanding the exponentials in the last line of Eq. (20), we get:

〈Oout |Oin〉 =
�

I +∆G log
Æ

x2µ2 + · · ·
�

G
�

I − G∆T log
Æ

x2µ2 + · · ·
�

= G +
�

∆G − G∆T
�

log
Æ

x2µ2 + · · · (21)

Then, the independence of the coordinates implies the relation [2]:

∆G − G∆T = 0 . (22)

We apply the previous analysis to massless QCD-like theories, since they are conformal invari-
ant in perturbation theory up to the order of g2 and, in particular, the following perturbative
expansions hold:

∆(g) = D I + g2γ0 + · · · (23)

G(g) = G0 + g2G1 + · · ·

in the conformal renormalization scheme [33], where D is the canonical dimension of the
operators Oi that mix under renormalization. Therefore, expanding Eq. (22) to the order of
g2, we obtain [2]:

γ0G0 − G0γ
T
0 = 0 . (24)

We distinguish two cases [2]:

• (I) γ0 is diagonalizable: Eq. (24) implies that G0 commutes with γ0 in the diagonal
basis and thus in any basis. Moreover, since G0 is a real symmetric matrix, it is diagonal-
izable as well, and therefore G0 and γ0 are simultaneously diagonalizable. Moreover, if
the theory is unitary, G0 must have positive eigenvalues.

• (II) γ0 is nondiagonalizable: In this case G0 has necessarily negative eigenvalues, hence
the theory is nonunitary in its free conformal limit at g = 0 in the gauge-invariant Her-
mitian sector.

Indeed, if γ0 is nondiagonalizable, Eq. (22) nontrivially constrains [31] [2] the structure
of G0, which can be set in the canonical form [31] [2]:

G′0 =













0 0 0 · · · 1
0 0 ... 1 0
0 .. . 1 0 0
... . . .

...
...

...
1 0 · · · · · · 0













(25)

by a suitable change of basis. It turns out [31] [2] that G′0 has [r/2] positive eigenvalues
and [r/2] negative eigenvalues, where r is the rank of G′0. Therefore, the scalar product
of the theory, which is induced by G′0, is not positive definite and, consequently, the
theory is nonunitary.

By summarizing, the nondiagonalizability of γ0 and the existence of the conformal structure
to the order of g2 determine the structure of G0, which defines the scalar product in the free
conformal limit, in such a way that the free conformal limit is nonunitary if γ0 is nondiagonaliz-
able. Therefore, the perturbative conformal symmetry to the order of g2, and the lowest-order
unitarity, rule out the cases (III) and (IV) of operator mixing in the gauge-invariant Hermitian
sector of a massless QCD-like theory. However, the previous statement does not necessarily
apply outside the gauge-invariant sector that need not to be unitary due to the mixing with
the ghost sector.
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4 Conclusion

In the present paper we have reviewed recent progress on the problem of the operator mixing in
massless QCD-like theories [1,2] that exploits the theory of canonical forms for linear systems
of differential equations and, specifically, the Poincaré-Dulac theorem. We have shown that the
differential-geometry perspective [1,2] allows us to obtain a complete classification of operator
mixing, and to assess whether or not it may be reduced to the multiplicatively renormalizable
case by a suitable choice of the operator basis. Finally, imposing unitarity of the free conformal
limit, we have demonstrated that the first coefficient, γ0, of the anomalous dimension matrix
should always be diagonalizable in the gauge-invariant sector of a massless QCD-like theory.
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