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W+c-jet production at the LHC with NNLO QCD accuracy
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Abstract

In these proceedings, we highlight some aspects of the recent computation of NNLO QCD
corrections for W production in association with a charm jet at the LHC. The results are
presented in the form of cross sections and differential distributions and are compared
to ATLAS data.
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1 Introduction

The production of W boson in association with a charm jet at the LHC has raised significant
interest in the recent years. Beyond being interesting on its own as another test of perturbative
QCD, the process is very sensitive to the parton distribution function (PDF) of the strange/anti-
strange quark in the proton. This is simply due to the direct link between W+c-jet production
and strange/anti-strange quarks in the initial state as illustrated in the left-hand side of fig. 1. It
means that this process constitutes a key ingredient for the determination of the strange/anti-
strange quark PDF [1, 2]. To that end, several experimental analyses by both the ATLAS [3]
and CMS collaborations [4–6] have been carried out.

On the theory side, next-to-leading order (NLO) QCD corrections have been known for
quite some time for both the Tevatron [7] and the LHC [8]. Very recently, these corrections
have been matched to parton shower [9]. In these proceedings, we briefly review some of the
results of ref. [10], where the first next-to-next-to-leading order (NNLO) QCD corrections to
W production in association with a charm jet at the LHC have been computed. In the original
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Figure 1: Feynman diagrams of pp → W+jc at LO with diagonal CKM matrix (left)
and off-diagonal elements (right).

article, more details are provided such as predictions with different PDF sets, differential ratios
between the W+ and W− signatures etc.

The structure of the proceedings reads as follow: in section 2, our best prediction is com-
pared to ATLAS data [3] at 7TeV and the results are briefly discussed. In section 3, a short
conclusion is provided. For more information, the interested reader is referred to the original
article [10] as all the inputs utilised for the numerical simulations can be found there.

2 Results

In the introduction, the direct link between strange PDF and W+charm production at the
LHC has been explained. Nonetheless, it is worth emphasising that this relation holds only
at leading order (LO) when assuming a diagonal CKM matrix. Considering off-diagonal CKM
elements (see the right-hand side of fig. 1) or including higher-order QCD corrections signifi-
cantly complicates the situation by adding new partonic channels. This warrants therefore the
precise computation of QCD corrections for this process. For the predictions presented here,
the effect of Vcd 6= 0 is included at Born level only. Also, all theoretical predictions presented
here have been obtained withing the STRIPPER framework which is a c++ implementation of
the four-dimensional formulation of the sector-improved residue subtraction scheme [11–14].

Following the ATLAS analysis [3], the phase-space definition reads

pT,` > 20 GeV, |η`|< 2.5, pT,miss > 25 GeV, mW
T > 40GeV, (1)

for the leptonic final states. In addition, one and only one charm jet should fulfil

pT,jc > 25 GeV, |ηjc |< 2.5. (2)

In fig. 2, the cross sections of pp → W+jc and pp → W−jc are compared to the mea-
surements of the ATLAS collaboration [3]. In addition, the ratio of the two cross sections
RW±jc = σW+jc/σW−jc is also provided. Based on the previous discussion, this ratio behaves ap-
proximately like RW±jc ∼

�

|Vcs|2s̄+ |Vcd|2d̄
�

/
�

|Vcs|2s+ |Vcd|2d
�

, meaning that it also provides a
sensitive probe of the strange-quark PDF.

The first interesting aspect to observe is that NLO QCD corrections are large while the
NNLO ones are much more modest. This is by now a very well understood phenomenon for
V+j processes [15] and is also a sign of good perturbative convergence. As expected, the scale
uncertainty is significantly decreasing when including higher orders. At NNLO, it becomes of
the order of 2-3 per cent, meaning that it is smaller than the uncertainty due to PDF variation
which is around 4%. Finally, the NNLO computations and the experimental data agree within
their respective uncertainties. This holds true for both signatures as well as the ratio.
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Figure 2: Cross sections for pp → W+jc, pp → W−jc, and the ratio RW±jc at the
LHC with

p
s = 7TeV. The theoretical predictions up to NNLO QCD accuracy are

compared to the ATLAS data [3].
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Figure 3: Differential distributions in the absolute rapidity of the muon/anti-muon in
the process pp→W+jc (left) and of the muon in pp→W−jc (right) at the LHC withp

s = 7TeV. The upper panel shows the absolute predictions as well as the ATLAS
data [3].

At the level of the differential distributions, the general picture is the same, with large NLO
corrections and relatively moderate NNLO effects across the phase space. As an example, the
differential distribution in the absolute rapidity of the muon/anti-muon is given in fig. 3. It
is shown for both processes pp → W+jc (left) and pp → W−jc (right). The uncertainty due
to PDF variation is again larger than the scale uncertainty obtained at NNLO accuracy. In the
same way as for the fiducial cross section, the data-theory agreement is rather good over the
whole kinematic range.

Nonetheless, it is worth mentioning a few limitations of this comparison. First, in our
computation we have made use of the flavor-kT algorithm [16] to ensure an infrared safe
definition of the charm jets. On the other hand, the ATLAS measurement has been performed
using the anti-kT algorithm [17]. For the case of Z+ b production, this mismatch has been
estimated to be around 10% [18]. In the future, it is thus worth investigating such effect
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for W+c measurements. Second, the effects of Vcd 6= 0 has only been included at LO in our
computation. At this order, it amounts to 5% to 10% depending on the signature. It is thus
expected that such effects should amount to few per cent at higher orders. Finally, electroweak
(EW) corrections have been here neglected. Due to Sudakov logarithms, these are usually
around few per cent and grow negatively in high-energy limits. The EW corrections of order
O
�

αsα
3
�

have been found to be around −3% [19] while the subleading ones of order O
�

α4
�

are expected to be below a per cent [20].

3 Conclusion

In these proceedings we have reported on a recent computations of NNLO QCD effects for
the W+c-jet production at the LHC. In particular, we have focused on the main highlight of
ref. [10] which is the comparison of our best predictions with the ATLAS measurement of
W+c-jet at 7 TeV [3]. Overall the agreement between theory and data is good. Nonetheless
in order to perform precision comparisons, several aspects should be addressed in the future:
the inclusion of off-diagonal CKM elements at higher order, the inclusion of EW corrections,
and finally quantifying the effect of different jet algorithms for the charm jets identification.
This work constitutes therefore only a first step toward determining with high precision the
strange-quark content of the proton.
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