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Abstract

Analytic expressions in terms of polylogarithmic functions for all three families of planar
two-loop five-point Master Integrals with one off-shell leg are presented. The Simplified
Differential Equations approach is the only known way to fulfil this task due to its unique
factorisation property of the symbols of the canonical differential equation. The results
are relevant to the study of many 2→ 3 scattering processes of interest at the LHC.

Copyright D. Canko et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 12-10-2021
Accepted 06-05-2022
Published 21-06-2022

Check for
updates

doi:10.21468/ciPostPhysProc.7.037

1 Introduction

During the last decade we have learned that in order to discover new phenomena in Nature,
from gravitational wave astronomy [1] to high-energy physics [2, 3], we need not only very
sophisticated, state-of-the-art instrumentation, but also very precise theoretical predictions.

Next-to-next-to-leading order (NNLO) accuracy is needed for the vast majority of QCD
dominated scattering processes at the LHC (see [4] and references therein). Two-loop am-
plitude computations require the reduction of the scattering matrix element in terms of basis
integrals, usually referred to as Master Integrals (MI). Traditional reduction techniques based
on integration-by-part identities [5–7] (IBP), at the integral level, are now more and more
replaced by integrand-reduction methods [8–10], following the one-loop paradigm [11].
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Results for five-point two-loop amplitudes, relevant for three-jet/photon, W, Z , H + 2 jets
production have been recently presented [12–16]. Moreover, a complete NNLO calculation for
the relatively easy case of three-photon production at the LHC, has been recently published [17,
18]. Despite the progress in understanding amplitude reduction and real radiation corrections
at NNLO, a remarkable contradistinction with the NLO case is that the basis of Master Integrals
at two loops is still far from complete1.

Figure 1: Diagrammatic representation of the planar and non-planar families with
one external massive leg (double line). In the first row, P1 (left), P2 (middle) and P3
(right) planar families are shown. In the second and third row, N1 (top left), N2 (top
middle), N3 (top right), N4 (bottom left), N5 (bottom right) non-planar families are
shown. All internal particles are massless.

Five-point two-loop Master Integrals determine the current frontier. The computation of
all planar and non-planar five-point two-loop Master Integrals with massless internal propa-
gators and on-shell light-like external momenta, has been completed some time ago [21–25].
The next step on this path of computing the five-point two-loop Master Integrals would be
those with one of the external legs being off-shell. The planar and non-planar topologies cor-
responding to these Master Integrals are shown in Fig. 1. Based on the Simplified Differential
Equations (SDE) approach [26], all Master Integrals for the first non-trivial planar family of
five-point two-loop Master Integrals with massless internal propagators and one external par-
ticle carrying a space- or time-like momentum, P1 in Fig. 1, as well as the full set of planar
five-point two-loop massless Master Integrals with light-like external momenta [21] has been
calculated some time ago. Very recently results on all planar families have been reported in ref-
erence [27]. In reference [28] we presented fully analytic results in terms of poly-logarithmic
functions for all planar families, based on the Simplified Differential Equations approach.

In section 2, we define the scattering kinematics and derive the form of the canonical
differential equation in the SDE approach. The derivation of the boundary terms and the
solution for all Master Integrals in terms of Goncharov poly-logarithms (GP), is presented in
section 3. In section 4 we show how to obtain numerical results from our analytic expressions
in all kinematical regions. Finally in section 5 we summarize our findings and discuss future
applications with emphasis on the computation of the remaining non-planar five-point two-
loop Master Integrals.

1For interesting alternative approaches see references [19,20].
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2 Planar two-loop five-point Master Integrals with one off-shell
leg

There are three families of Master Integrals, labelled as P1, P2 and P3, see Fig. 1, associ-
ated to planar two-loop five-point amplitudes with one off-shell leg. We adopt the definition
of the scattering kinematics following [27], where external momenta qi , i = 1 . . . 5 satisfy
∑5

1 qi = 0, q2
1 ≡ p1s, q2

i = 0, i = 2 . . . 5, and the six independent invariants are given by

{q2
1, s12, s23, s34, s45, s15}, with si j :=

�

qi + q j

�2
.

In the SDE approach [26] the momenta are parametrized by introducing a dimensionless
variable x , as follows

q1→ p123 − x p12, q2→ p4, q3→−p1234, q4→ x p1 , (1)

where the new momenta pi , i = 1 . . . 5 satisfy now
∑5

1 pi = 0, p2
i = 0, i = 1 . . . 5, whereas

pi... j := pi + . . .+ p j . The set of independent invariants is given by {S12, S23, S34, S45, S51, x},
with Si j :=

�

pi + p j

�2
. The explicit mapping between the two sets of invariants is given by

p1s = (1− x)(S45 − S12 x), s12 =
�

S34 − S12(1− x)
�

x , s23 = S45, s34 = S51 x ,

s45 = S12 x2, s15 = S45 + (S23 − S45)x (2)

and as usual the x = 1 limit corresponds to the on-shell kinematics.
The P1 family consists of 74 Master integrals. For P2 and P3 the corresponding numbers

are 75 and 86. This can easily be verified using standard IBP reduction software, such as
FIRE6 [29] and Kira [30,31]. The top-sector integrals are shown in Fig. 2.

xp1

xp2

−p1234

p123 − xp12

p4

xp1 xp2

−p1234

p123 − xp12

p4

xp2

p123 − xp12

xp1

p4

−p1234

Figure 2: The two-loop diagrams representing the top-sector of the planar pentabox
family P1, P2 and P3. All external momenta are incoming.

2.1 Canonical basis and Differential Equations

In order to express all planar five-point integrals, the easiest way is to define a basis that
satisfies a canonical differential equation. By basis we mean a combination of Feynman Inte-
grals with coefficients depending on the set of invariants and the dimensionality of space-time
d = 4− 2ε. Let us assume that such a basis is known, then the DE is written in general as

d ~g = ε
∑

a

d log (Wa) M̃a ~g , (3)

where ~g represents a vector containing all elements of the canonical basis, Wa are functions of
the kinematics and M̃a are matrices independent of the kinematical invariants, whose matrix
elements are pure rational numbers. Notice that Eq. (3) is a multi-variable equation and in the
case under consideration the differentiation is understood with respect to the six-dimensional
array of independent kinematical invariants, {q2

1, s12, s23, s34, s45, s15}. Since Wa are in general
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p123 − xp12
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xp1

−p1234
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Figure 3: The two-loop diagram representing the decoupling basis element.

algebraic functions of the kinematical invariants a straightforward integration of Eq. (3) in
terms of generalized poly-logarithms is not an easy task.

In the SDE approach though, Eq. (3) takes the much simpler form

d ~g
d x
= ε

∑

b

1
x − lb

Mb ~g , (4)

where Mb are again rational matrices independent of the kinematics, and the so-called letters,
lb, are independent of x , depending only on the five invariants,

�

S12, S23, S34, S45, S51

	

. Notice
that the number of letters in x is generally smaller than the number of letters in Eq. (3).
Since the Eq. (4) is a Fuchsian system of ordinary differential equations, it is straightforwardly
integrated in terms of Goncharov poly-logarithms, G (l1, l2, . . . ; x).

As is seen from Eq. (4) the main achievement of the SDE approach is the factorisation of
the letters Wa in Eq. (3) in terms of the x−variable, in the form x− lb, where lb depend on the
underlying kinematical variables. The knowledge of the canonical basis is enough within the
SDE approach to derive the form of the corresponding canonical differential equation, Eq. (4),
by explicitly differentiating with respect to x and using IBP identities to express the resulting
combinations of Feynman integrals in terms of basis elements.

In the present calculation this factorisation is achieved for all basis elements of the P1
family. For P2 and P3 families Eq. (4) is applicable after eliminating a special basis element
whose leading singularity is proportional to a non-rationalizable square root in terms of x . The
corresponding integral is shown in Fig. 3 and it is the same for the two families. Its expression
in terms of poly-logarithmic functions is already known from the double-box families with two
off-shell legs2. For a detailed discussion see reference [28].

2The basis element is numbered as 46 in the P2 family and 53 in the P3 family and is given in terms of the
double-box P23 family variables [32].
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3 Boundary Conditions and Analytic Expressions

The solution of Eq. (4) up to order O
�

ε4
�

can be written as follows:

g= ε0b(0)0 + ε
�

∑

GaMab(0)0 + b(1)0

�

+ ε2
�

∑

GabMaMbb(0)0 +
∑

GaMab(1)0 + b(2)0

�

+ ε3
�

∑

GabcMaMbMcb
(0)
0 +

∑

GabMaMbb(1)0 +
∑

GaMab(2)0 + b(3)0

�

+ ε4
�

∑

GabcdMaMbMcMdb(0)0 +
∑

GabcMaMbMcb
(1)
0

+
∑

GabMaMbb(2)0 +
∑

GaMab(3)0 + b(4)0

�

(5)

Gab... := G(la, lb, . . . ; x) ,

where g and M represent ~g and M appearing in Eq. (4) and b(i)0 are the boundary values of
the basis elements in the limit x → 0 (see Eq.(3.6) of reference [21]) at order εi , i = 0 . . . 4.
In the above equation G(la, lb, . . . ; x) stands for Goncharov polylogarithms. Since all the data
of the above equation, namely the letters la, lb, . . . and the matrices Ma,Mb, . . . are already
given, the only remaining task is the computation of the boundary values, b(i)0 , in terms of
poly-logarithmic functions.

To derive the x → 0 limit of basis elements we first exploit the canonical differential equa-
tion in x , Eq. (3), which in the limit takes the form

d ~g
d x
= ε

1
x

M0~g +O(x0) , (6)

with the solution (b :=
∑4

i=0 ε
ib(i)0 )

g0 = Seε log(x)DS−1b (7)

and the matrices S and D are obtained through Jordan decomposition of the M0 matrix,
M0 = SDS−1. We call the matrix R0 = Seε log(x)DS−1, the resummed matrix at x = 0. Since the
biggest Jordan block of it has dimension two, it can be written in the form

R0 =
∑

i

xniε (R0i + ε log (x)R0i0) , (8)

with R0i and R0i0 matrices of rational numbers and the exponents ni are the eigenvalues of
the matrix D (equivalently M0).

On the other hand through IBP reduction the elements of the canonical basis can be related
to a set of Master Integrals,

g= TG. (9)

The list of Feynman Integrals G chosen as Master Integrals in the IBP reduction as well as the
expression of the basis elements in terms of Feynman Integrals for all families is given in the
ancillary files of reference [28].

We have used the expansion by regions techniques [33] in order to write each Master
Integral in the form of a sum over region-integrals,

Gi =x→0

∑

j

x b j+a jεG( j)i , (10)
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with a j and b j being integers, by making use of the FIESTA4 [34] public code. Combining
Eqs. (7) and (9) we get

g0 := R0b= lim
x→0

TG|O(x0+a jε) , (11)

where, since the dependence of the left-hand side on x is only through Eq. (8), in the right-
hand side, except for the terms of the form xa jε arising from Eq. (10), we expand around
x = 0, keeping only terms of order x0. Notice also, that the left-hand side of the equation
contains the boundary values of the basis elements that are pure functions of the underlying
kinematics ~S := {S12, S23, S34, S45, S51} whereas in the right hand side the matrix T is an alge-
braic function of ~S. The consistency of Eq. (11) implies that the right-hand side should also be
a pure function of ~S. Therefore, in order to determine the matrix T entering in Eq. (11), we
can employ solutions of IBP identities using numerical, actually integer values for ~S, keeping
x and d in a symbolic form. This results to a significant reduction in complexity and CPU
time, taking into account that there are several basis elements in g, that are given in terms of
Baikov polynomials [27], µ11,µ12,µ22, which when expressed in terms of inverse propagators,
contain Feynman Integrals with up to fourth powers of irreducible inverse propagators. For
details see reference [28].

4 Numerical Results and Validation

In order to numerically evaluate the solution given in Eq. (5), Goncharov poly-logarithms up
to weight 4 need to be computed. To understand the complexity of the expressions at hand,
we present in Table 1, the number of poly-logarithmic functions entering in the solution. In
parenthesis we give the corresponding number for the non-zero top-sector basis elements. The
weight W=1 . . . 4 is identified as the number of letters la in GP G(la, . . . ; x).

Table 1: Number of GP entering in the solution, as explained in the text.

Family W=1 W=2 W=3 W=4
P1 (g72) 17 (14) 116 (95) 690 (551) 2740 (2066)
P2 (g73) 25 (14) 170 (140) 1330 (1061) 4950 (3734)
P3 (g84) 22 (12) 132 (90) 1196 (692) 4566 (2488)

The computation of GPs is performed using their implementation in GiNaC [35]. This
implementation is capable to evaluate the GPs at an arbitrary precision. The computational
cost to numerically evaluate a GP function, depends of course on the number of significant
digits required as well as on their weight and finally on their structure, namely how many of
its letters, Eq. (5), satisfy la ∈ [0, x]. We refer to reference [36] for more details. In Table 2
results for a Euclidean point where all GP functions with real letters are real, namely no letter
is in [0, x], are presented. The CPU time running the GiNaC Interactive Shell ginsh, is given
by 1.9, 3.3, and 2 seconds for P1, P2 and P3 respectively and for a precision of 32 significant
digits.

In order to obtain numerical results for scattering kinematics, we need to properly analyt-
ically continue the GPs and logarithms involved in our solution, Eq. (5). The easiest way is to
determine for each physical point under consideration, the real parameters δi j and δx so that
the substitution, Si j → Si j + iδi jη, x → x + iδxη, η→ 0, of the variables used in our solution,
properly accounts for the analytic continuation. As detailed in references [21,32], δi j and δx
should satisfy analyticity constraints stemming (a) from the second graph polynomial F of the
top-sector Feynman integral and (b) from the representation of the one-scale integrals in terms
of the variables x and Si j . For details and results for all physical regions see reference [28].
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Table 2: Numerical results for the non-zero top sector element of each family with
32 significant digits at S12→−2, S23→−3, S34→−5, S45→−7, S51→−11, x → 1

4 .

P1 g72

ε0: 3/2
ε1: -2.2514604753379400332169314784961
ε2: -17.910593443812320786572184851867
ε3: -26.429770706459534336624681550003
ε4: 21.437938934510558345847354772412

P2 g73

ε1: 2.8124788185742741402751457351382
ε2: 5.4813042746593704203645729908938
ε3: 11.590234540689191439870956817546
ε4: -5.9962816226829136730734255754596

P3 g84

ε0: 1/2
ε1: 3.2780415861887284967738281876762
ε2: 0.11455863130537720411162743574627
ε3: -16.979642659429606120982671925458
ε4: -48.101985355625914648042310964575

We have also compared our results for all families, all basis elements and all physical points
with those of reference [27] and found perfect agreement to the precision used, (Ndigi ts = 16, 32).
We also checked our results, not only at the level of basis elements but also at the level of Mas-
ter Integrals, against FIESTA4 [34] and found agreement within the numerical integration
errors provided by it.

5 Conclusions and Outlook

We have presented analytic expressions in terms of poly-logarithmic functions, Goncharov
Polylogarithms, of all planar two-loop five-point integrals with a massive external leg [28].
This has been achieved by using the Simplified Differential Equations approach and the data
for the canonical basis provided in reference [27]. Moreover, the necessary boundary values of
all basis elements have been computed, based mainly on the form of the canonical differential
equation, Eq. (4) and, in few cases, on the expansion by regions approach. The ability to
straightforwardly compute the boundary values at x = 0 and to even more straightforwardly
express the solution in terms of Goncharov Polylogarithms, is based on the unique property of
the SDE approach that the scattering kinematics is effectively factorised with respect to x , in
noticeable contradistinction with the standard differential equation approach, where such an
analytic realisation of the solution is prohibitively difficult.

Obviously, the next step, is to extend the current work in the case of the remaining five
non-planar families, shown in Fig. 1. The hexa-box families N1, N2, N3 are currently under
investigation and we have succeeded in obtaining a full analytic representation for the N1
family in terms of Goncharov polylogarithms3. Results will be published in the near future.
When the computation of all five non-planar families in Fig. 1 is completed, a library of all two-
loop Master Integrals with internal massless particles and up to five (four) external legs, among
which one (two) massive legs will be provided: this will constitute a significant milestone
towards the knowledge of the full basis of two-loop Feynman Integrals.

3We are grateful to the authors of reference [37] for providing the canonical basis of the hexa-box families, as
well as their numerical results with which we found perfect agreement for N1.
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