SCIl SciPost Phys. Proc. 7, 042 (2022)

NNLO photon fragmentation within antenna subtraction

Thomas Gehrmann and Robin Schiirmann*

Physik-Institut, Universitat Ziirich, Winterthurerstrasse 190, CH-8057 Ziirich, Switzerland

* robins@physik.uzh.ch

15th International Symposium on Radiative Corrections:
Applications of Quantum Field Theory to Phenomenology,
FSU, Tallahasse, FL, USA, 17-21 May 2021
doi:10.21468/SciPostPhysProc.7

Radcor & LoopFest 4

Sttt Sy

i oS
17-21 May. 2021, FSU, Tallshassee. FL, USA
5 R i, A

Abstract

We report on our recent progress towards including the photon fragmentation contri-
bution in next-to-next-to-leading order (NNLO) QCD predictions for photon production
cross sections. This extension to previous NNLO calculations requires the identification
of the photon in singular parton-photon collinear limits. We discuss how these limits can
be subtracted within antenna subtraction using fragmentation antenna functions and we
outline their integration.
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1 Introduction

The production of a photon (y) in hadronic collisions can proceed through different mecha-
nisms. Besides direct photons produced in the hard underlying scattering process, photons can
also be produced in jet events where the jet radiates a photon in the process of hadronisation.
The latter is called fragmentation contribution and is described by non-perturbative parton-to-
photon fragmentation functions D,_,, [1,2]. To reduce the contribution from fragmentation
and eliminate the large background of secondary photons from hadronic decays, a photon
isolation is imposed in the experimental analysis. The fixed-cone isolation limits the hadronic
energy inside a fixed cone around the photon and is used in all experimental measurements to
date. As it allows a limited amount of hadronic energy in the photon direction, measurements
using this isolation also contain a fragmentation contribution (besides the contribution from
direct photons). Alternative isolation prescriptions use a dynamical cone [3] in which the al-
lowed hadronic energy is decreasing towards the center of the cone. These idealised isolation
prescriptions fully eliminate the fragmentation contribution.

The calculation of isolated photon production and photon-plus-jet production cross sections
at hadron colliders using a fixed-cone isolation procedure and including both, the direct and
the fragmentation contribution has been achieved to next-to-leading order (NLO) QCD accu-
racy [4-10]. Available next-to-next-to-leading order (NNLO) QCD predictions [ 11-13] for this
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process suppress the fragmentation contribution using an idealised isolation. Consequently,
they rely on an empirical tuning of isolation parameters to mimic the experimental isolation.
To overcome this drawback of available NNLO QCD predictions, a calculation at this level of
accuracy with a fixed-cone isolation is needed. Predictions with a fixed-cone isolation have
to handle additional photon-parton collinear singularities which have to be extracted using a
subtraction procedure, which was accomplished up to now only for e*e™ collisions [14]. In
contrast to singular limits in QCD, in which no kinematic information on individual partons
has to be retained, in photonic singular limits the information on the photon momentum must
not be lost. We describe how these photonic limits can be subtracted in the antenna subtrac-
tion formalism [15] with a new class of fragmentation antenna functions and outline their
integration which remains differential in the final-state photon momentum fraction.

2 NLO Photon Fragmentation in Antenna Subtraction

To accommodate photon fragmentation in calculations based on the antenna subtraction for-
malism, we need to introduce a new type of fragmentation antenna functions. Their unin-
tegrated forms are identical to already known antenna functions, but they come with novel
types of phase space factorisations, leading to different integrated antennae. At NLO, only
the simple-collinear quark-photon final-state singularity needs to be accounted for (and the
photon is required to be observed, thus preventing it from becoming soft), which implies that
Ag(kq, k,, k) in its final-final crossing and initial-final crossing with a quark in the initial state
are sufficient. In the following we will discuss the subtraction of the quark-photon collinear
limit in the initial-final configuration.

Using the notation established in [16], the real subtraction term for the photon becoming
collinear to a final-state quark in the initial-final configuration reads

1
des = NR d®,,1(..., kg kys. .5 PgsP2)
) s Ry s Fq» 2
q(r) p;n. Sni1 &)

X QéAg(kq; k)i/d.: lv)q)M,?( () k(qy); PR pq: pz)Jﬁf)({f(}n,z) 5

where Qg is the charge of the final-state quark and z is the photon momentum fraction in the
mapped momentum kgyy. It is z = z3(Py, kiyd', k,) with the definition of the NLO momentum
fraction . S

23 (koo ki, k) Pyt 2)
The jet function J r(r?) applies the jet algorithm as well as any cuts on the photon. Consequently,
it retains an explicit functional dependence on z. The initial-state quark acts as a reference
parton, indicated by the check-mark assigned to its momentum, py. In the initial-final config-
uration the reference parton is always the initial-state parton. Since the photon is identified
within the cluster k(,,), it carries the superscript ’id’.
To integrate the subtraction term we have to rewrite the three-body phase space appearing in
the initial-final phase-space factorisation [17] to make the integration over z explicit,

Sv
L) dz, (3)
Sqy tS4q

where ¢ = (pg—ky — kq)2 = —Q? and d®, = d®,(q, pg; ky» kq). We can integrate the initial-
final real subtraction term over the unresolved phase space while staying differential in z. We

_ dx Q2
d¢n+l(‘ ce kq: ky: R ;pq)pZ) = dq)n(' . ')k(qy)) see ;pq:p2)?%dq}26 z—
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obtain

Q A v 1
d q(y)_N Z de, (..., k(gy), -3 Bg> P2)
nperm (4)
X Q2ATT (20, 2) M., kgyys - 3 Pas P2 (K} 3 2),

with the z-dependent integrated fragmentation antenna function

| 1 B :
Ag,1d.y(x,z):@Jd‘bz(q’pq,kw kgAY (kg k1%, )8 (z_ ar )

Sy +S4q
Q i
= r(1 (QZ) T (x,2) AY(kg, kI, pg) )
= (@) (—55(1 — )P0 (z) + 55(1 —x)(z+PO(2)log (1 —2)z) )
x+i
2z

and the normalisation factor C(e) = (4me"%)¢/(87%). The Jacobian factor

Jx,2)=1—x)x2¢(1—2)¢ (6)

+ %DO(X)P)ES)(Z) — + 1) +O(e)

originates from expressing the integration over the two-body phase space in terms of a single
integration over z. After expressing the invariants in the antenna function in terms of x and
z, terms of the form (1 —x)~ ¢ are expanded in distributions, where we use the notation

D, (x) = [M

1—x
As can be seen from eq. (5), the quark-photon collinear singularity is manifest in an 1/e-pole
at the integrated level. It is cancelled by the mass factorisation contribution from the quark-
to-photon fragmentation function D, which reads

] ,nENo. (7)
+

qa-r?

oM == d6% e TO, (z,13)

q 217 q-r
N 0 2, —2e p(0) () () ®)
=N dz > dq’n({k}n’Pq’Pz) “My (kg ) Qe T () 1 (s 2),
perm.
where u, denotes the fragmentation scale and F)Eg) =—(1/ e)Py(g). The Born cross section at
hand is
A6 = NP > d2,({k}ipg, p2)5- M°( K- WO({K}32). ©

perm.

In here, the jet function depends on z because the quark momentum k, denotes a quark-
photon cluster containing a photon with momentum fraction z. The normalisation factors are
related through 'V = C(e)NR = 2C(€)(4na)NEC. In eq. (8) the factor 1/2 originates from

jet
different normalisation conventions of photonic and jet matrix elements. The full initial-final

virtual subtraction term is then given by

dx 1 _
ol ) = f f Z A®, (.., kigy)s-- -3 Pg» P2)

” perm. (10)
1),id. - - 7
X QZJE M Y(k(qy)apq; X,Z)M’?(. () k(qy); cee JquPZ)J,S;l)({k}n’Z) .

Combination with the mass factorisation term I‘Y(g) (2) of the quark-to-photon fragmentation
function yields an e-finite integrated fragmentation dipole:

TP gy, B 0,2) = AT (,2) = 2112 T (2) 61 =), (n
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3 Ingredients at NNLO

At NNLO, double unresolved photonic limits of double-real matrix elements as well as single
unresolved photonic limits of real-virtual matrix elements have to be subtracted. The former
limits correspond to triple collinear q || g || ¥ and q || y || @ configurations. They can be
subtracted using Aﬂ(q, g,7,q) and Eg(q’ ,q,Y,q) antenna functions respectively. Their uninte-
grated versions have the same form as the already known antenna functions [15]. We use
these antenna functions in the initial-final configuration, which allows to use the initial-state
momentum as reference direction in the definition of the collinear momentum fraction. The
double-real subtraction term for the q || g || v limit reads

1

A6 = NRR N 48 (ko ko, Koy ol Pas P2)
s Rgs Rgs By s Fq» 2
q(y) p;s Sp+o (12)

X AY(Bg, kgr kit k) Q2 M o (oovs k(gygys )T (Y3 2),

where the momentum fraction is given by z = z4(py, kiyd',kg,kj) with the definition of the
NNLO momentum fraction

i id. Sab
24 (ko ki Kk g) = ——2——. (13)
Sab tSac TSad

2,4 faithfully reproduces the momentum fraction of the photon in all double unresolved limits.
The Ag antenna still carries a single unresolved photon limit which has to be subtracted to
guarantee a cancellation of the singularities of the double-real matrix element (for details
see [16]). To remove this singularity an additional subtraction term is introduced which takes
the form

A S,b 1
do. 2 = —NRR Z d@n_,_z(...,kq,kg,ky,...;pq,pz)s_
perms n+2 (14)
X Ay, ki k) AY(Bg, g ki) ) QG MY (oo Ki(gpg)s )T ({RYns 2 = uv).

In the first mapping corresponding to the leftmost antenna function the photon is identified
and a momentum fraction u of the photon in the quark-photon cluster is reconstructed. In
the second mapping the quark-photon cluster is identified and a momentum fraction v of the
cluster in the limit g || (yq) is calculated. The momentum fraction which is used in the jet
function Jgf) to reconstruct the photon momentum is then given by

Z=uv =z, (qu, kiyd', kq) 25 (ﬁq, ké‘;'q), kg) =2, (f)q, k)i,d', kg, kq) , (15)

where we used the definition of the NLO momentum fraction in eq. (2) and the form of the
initial-final mapping [17]. As the two momentum fractions in eq. (12) and in eq. (14) coincide,
the cancellation of the single unresolved photon limit between the two terms is guaranteed.
At NNLO, additional terms are needed for an overall subtraction of all unresolved limits of
the matrix element. In these terms more Xg fragmentation antenna functions appear where
a photon-parton cluster is identified (as the second antenna function in eq. (14)). All these
fragmentation antenna functions have been integrated in the initial-final and final-final con-
figuration [18].

For the subtraction of the single collinear q || y limit of one-loop matrix elements only a single
one-loop antenna function, the A}(q,y,q) antenna function [15], is needed. We use it exclu-
sively in the initial-final configuration. The corresponding subtraction term takes the same
form as eq. (1) but with the replacement AR — AR” and Ag —>Aé. Since we use the fragmen-
tation antenna functions Aﬁ, Eg and A:lg in their unintegrated form in the subtraction terms,
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they have to be added back in their integrated form at the double-virtual level of the calcula-
tion.
The initial-final antenna functions are kinematically described by the scattering process

q(q*) + p; = kj + ki(+k;) , (16)

where k2 k2 k2 = pl =0and ¢>=—Q%<0.
We give a short outhne of the integration of these classes of fragmentation antenna functions.

3.1 Integration of the X2 Fragmentation Antenna Functions

The inclusive integrated initial-final antenna functions Xf are obtained by integration over
the corresponding three-body phase space [19], i.e

2

l]kl( ) fd¢3(kj1kk:kl;pi:q)(22_nxgjkl) a7)

C( )?

2
with x = 2%7 and the normalisation factor C(e) = (4me "£)¢/(8n2). For initial-final frag-
mentation antenna functions the same normalisation as in eq. (17) is used but the integration

remains differential in the final-state momentum fraction z, i.e.

+k )2
O id.j _ . ( 0
lel (x Z) C( )2 Jd¢3(kj:kk:klapi:q)5(z_ T) anl]kl (18)
The final-state momentum fraction is fixed by the additional 6-distribution and it describes the
fraction of energy carried by particle j in the unresolved limit. In the definition of the momen-
tum fraction the initial-state momentum p; is used as a reference momentum. The momentum
fraction can be rewritten as z = z,(p;, k‘d' , ki, k). As discussed above, all double- unresolved

identified photon limits are contained in two fragmentation antenna functions: A9 44,8, Y4 q)
and Eg(q ,q,7'%, ). To integrate these fragmentation antenna functions, we use the reduction
to master integrals technique. Using unitarity relations, we can express the §-distributions in
eq. (18) by cut propagators [20]. In this way we rewrite the phase-space integrals as 2 — 2
three-loop integrals in forward scattering kinematics.

The reduction to master integrals is performed using the program Reduze2 [21], which uses
the Laporta algorithm [22] to solve the system of equations between the different integrals
obtained by integration-by-parts techniques [23,24] and Lorentz invariance [25].

The initial-final scattering kinematics gives rise to 12 propagators from which four are cut
propagators. In the reduction to master integrals we require all integrals to contain the four
cut propagators in the denominator. For the integration of the two photonic X 2 fragmentation
antenna functions we find nine master integrals. The master integrals are calculated using
their differential equations in the two kinematic variables x and z. The boundary conditions
are fixed by integrating the solution of the differential equations over z and comparing the
result with the inclusive master integrals in [19]. The expressions for the integrated fragmen-
tation antenna functions are very lengthy [18] so that we do not quote them here.

3.2 Integration of the X 31 Fragmentation Antenna Functions

The inclusive integrated one-loop antenna functions in the initial-final configuration are de-
fined as [19]

1 Q2
1 — & . = x!
Xi,jk(x) ~ C(e) J d Z(kj’kk’pi’q)Zn Lk’ (42
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where X 1] is the unintegrated one-loop antenna function and d®, the two-particle phase
space. We define the integrated initial-final one-loop fragmentation antenna functions in line
with eq. (19) as

11d] Sij Q2 1
X (e2) = ()Jdq’z(kj,kk,PUQﬁ(z—m)gXi,jk

_¢ o (@) Iax]
2 r(1 Lik

(20)

The integration takes the same form as for the X g fragmentation antenna functions, see eq. (5)
above. The Jacobian factor 7 is given in eq. (6). As can be seen from eq. (20), no actual inte-
gration has to be performed to obtain the integrated fragmentation antenna functions X; ]1de
However, to express the integrated fragmentation antenna functions in terms of distributions
in (1 —x) and in z we first have to cast the unintegrated antenna functions in a form suit-
able for this expansion. Therefore, deriving the integrated initial-final one-loop fragmentation
antenna functions follows the steps of the derivation of the integrated initial-initial one-loop
antenna functions presented in [26]. In contrast to the NLO X g antenna functions which only
contain rational terms in the invariants, the one-loop antenna functions X 31 also contain log-
arithms and polylogarithms in the invariants. These functions have branch cuts in the limits
x — 1 and 2 — 0. Therefore, the expansion in distributions in 2 = 0 and x = 1 cannot be
performed directly. We follow the strategy of [26] and express the one-loop antenna functions
in terms of one-loop master integrals.

The one-loop master integrals appearing in the expressions for the one-loop antenna functions
are the one-loop bubble Bub(s;;) and the one-loop Box(s;;, s;;) in all kinematic crossings. Both
master integrals are well- deﬁned in the Euclidean region, in which all invariants are smaller
than 0. The master integrals have to be analytically continued from this kinematic region, to
the kinematic region under consideration given by

s..

lJ<0 , S <0, Sjk>0 , Sijk=_Q2<O' 21

While the analytic continuation of the bubble master integrals is trivial, care has to be taken in
case of the box integrals where hypergeometric functions appear. In the analytic continuation
of these box integrals the hypergeometric functions must not have a branch cut in the kinematic
endpoints x = 1 and z = 0 so that an expansion in distributions can be performed. The z-
integration of the resulting expressions recovers the known real-virtual initial-final master
integrals [19] and enabled us to identify an error in their numerical implementation for jet
production in deep-inelastic scattering [27].

The relevant one-loop integrated fragmentation antenna function for photon production is

Aé’ld'y(x,z). Its expression is very lengthy [18] such that we do not quote it here.

3.3 Coefficient Functions for Semi-Inclusive Deep Inelastic Scattering

The antenna functions Ag, Ag and Aé are derived from the squared matrix element of the
scattering y* — qgq at tree level and at one-loop respectively and the antenna functions Aﬂ
and Aﬂ are derived from the squared matrix element of the scattering process y* — qggq.
Therefore, the results for the integrated version of these fragmentation antenna function can
be compared to the coefficient functions of semi-inclusive deep inelastic scattering. Using the
notation of [28], the expansion of the semi-inclusive coefficient functions reads

ol = 0062 + 2P, n) + (2 ) ! P (x,2) + 0(a?), (22)
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with i = T,L. f’ corresponds to the parton which fragments into the final-state hadron and
f corresponds to the parton in the initial state. We find that the combination of coefficient
functions corresponding to the integrated fragmentation antenna functions is w? —w’ /(2—2€).
The results for the one-loop coefficient functions are well known [29]. Comparing the results
of the integrated Xg fragmentation antenna functions to the results stated in [30], we find

1 T,(1) 1 L(1) | _ 0idy 2e 1 )
4QzC (wgq 2(1—e)Ps1 )T AT (e 2) — iy Zryq (2),
(23)
1 T,(1) 1 L(1) ) _ 40idgq 9 (1) —2¢ (1) 1
4Q3Cr (wqq dA—%u )=A (o) =i Ty () = Pl (2) + A,

where .A1 is the one-loop vertex factor [15] in space-like kinematics. The NNLO coefficient

2

functions w iy are unknown, however, recently an approximation of the NNLO coefficient

functions w®? was derived using the threshold resummation formalism [28].

With the results of our integrated fragmentation antenna functions we are able to predict
the subleading color contribution to the above combinations of the semi-inclusive coefficient
functions wgéz). Expressed in terms of the integrated antenna functions and mass factorisation
kernels it reads

1 (wT,(z)_;wL,(z))
4Q2C, \"s1 T 2(1—e) 8 )|,y

_A01dy( )+A1U1dy(x 2)— uu‘A ZF(O)(Z)®( OId'q(X,Z)+A§)

(24)
— Uy ZEF(I)(X)®A0 ,id. Y(X 2)+ = MAZEF(O)(Z)®( 26F(§1)(X)+‘U,A26F(1)(Z))

3 (1) 10w,

where the notation ...|;,y means that only terms proportional to 1/N are considered. The
expressions for the initial-state mass factorisation kernel Fq(;) can be found in [16] and the
one-loop photon fragmentation mass factorisation kernel F(l) is given by [14]:

1
FY(;)(Z) = (p(°> ® P©)(z)— p(U(z) (25)

4 Conclusion

In this talk, we have described the extension of the antenna subtraction method to account
for photon fragmentation processes up to NNLO, deriving all newly required phase space fac-
torisations and integrated antenna functions [18]. New results on NNLO semi-inclusive DIS
coefficient functions were obtained as a by-product. Our extension of the antenna subtrac-
tion method will allow to compute NNLO corrections to processes with final-state photons
at hadron colliders for the realistic fixed-cone isolation prescriptions used in the experimen-
tal measurements, thereby improving upon previous results for the idealised dynamical-cone
isolation.
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