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Abstract

At present, the gauge coupling β-function in the Standard Model (SM) is known up to
four-loop order. As most SM calculations, dimensional regularization was employed.
Despite its striking success, other regularization schemes have emerged, which aim to
stay in the physical dimension as far as possible. In this contribution, we apply Implicit
Regularization, a scheme defined in momentum space that complies with BPHZ, to obtain
the two-loop gauge coupling β-function in the Standard Model. We reproduce the same
result obtained when applying dimensional regularization.
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1 Introduction

Renormalization group functions are essential ingredients to precisely probe the Standard
Model and its extensions. They allow experimental results performed at different scales to
be matched to theoretical predictions stemming from the knowledge of divergent intermedi-
ate pieces. Given the level of accuracy and accordance among experiment and theory, they
can actually be seen as a triumph of the renormalization program implemented in the context
of quantum field theory. The current state-of-the-art comprises the knowledge of the gauge
coupling β-function in the SM at four-loop order [1, 2], an achievement only possible after
some recent developments regarding the treatment of the γ5 matrix [3]. As customary, such
calculations have been performed by relying on dimensional regularization, which may suffer
from inconsistencies when dealing with dimensional specific objects.

As an effort to circumvent these problems, other regularization methods have been pro-
posed, which aim to stay in the physical dimension as far as possible (see [4,5] for a review).
However, as recently pointed out [6], they may also suffer from similar issues in general (see
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also [7–9] for particular examples). Nevertheless, since some of these methods aim to per-
form regularization/renormalization at integrand level, they may be more effective and prone
to a numerical approach. One promising candidate is Implicit Regularization [10] which is
defined in momentum space and complies with BPHZ [11]. In order to sketch the potential of
this method, some working examples can be envisaged, one of those being the determination
of the gauge coupling β-function in the SM at two-loop order. This constitutes a good check
since the coefficients up to this loop order are universal as long as the subtraction schemes
employed are mass-independent as is the case here. Moreover, this calculation may serve as a
backbone to a more complete study of the RGE functions, which are regularization dependent
at higher loop order in general, allowing the establishment of transition rules among methods.
Given these prospects, in this contribution we obtain the gauge coupling β-function in the SM
at two-loop order in the context of Implicit Regularization, confirming that it complies with
known results.

We organize our work as follows: in section 2 we present a very brief overview of the IREG
formalism, while in section 3 we present our main results. Finally, we conclude in section 4.

2 The Implicit Regularization formalism

The Implicit Regularization (IREG) method, first presented in [10], is based on the idea that the
UV divergent part of a general Feynman diagram can be isolated in integrals void from physical
parameters (masses/external momenta). This is accomplished by applying a mathematical
identity at integrand level which allows a separation between a UV only divergent integral
(free of external momenta/masses) and a finite part. All in all, the UV divergent part of a
general 1-loop Feynman amplitude will be proportional to

Ilog(λ
2) ≡

∫

k

1
(k2 −λ2)2

, (1)

where λ plays the role of the renormalization group scale in the method. By performing
subtractions of Ilog(λ2) one defines a minimal subtraction scheme in the context of IREG.
Therefore, the 1-loop renormalization functions Zi will be proportional to it as well. Since
derivatives of Zi account for renormalization group functions, derivatives of Ilog(λ2) will be
needed as well

λ2
∂ Ilog(λ2)

∂ λ2
= −b, b =

i
(4π)2

. (2)

At higher loop order a similar program can be envisaged in a way compatible with Bogoli-
ubov’s recursion formula [11]. Since we are adopting a mass-independent subtraction scheme,
the UV divergent part will only contain a logarithmic dependence, allowing us to define

I (l)log(λ
2)≡

∫

kl

1

(k2
l −λ2)n

lnl−1

�

−
k2

l −λ
2

λ2

�

, (3)

whose derivatives with respect to λ can be straightforwardly obtained

λ2
∂ I (l)log(λ

2)

∂ λ2
= −(l − 1) I (l−1)

log (λ
2)− b (l − 1)! where l > 1. (4)

Given these definitions, we can express the UV divergent part of a general Feynman am-
plitude at two-loop level as

A= c1 I (2)log(λ
2) + c2

�

Ilog(λ
2)
�2
+ c3 Ilog(λ

2) , (5)
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where ci are coefficients that may depend on masses/external momenta.
This brief description is aimed to provide the reader with the most basic and necessary

ingredients of the IREG rules, easing the presentation of the results of upcoming sections. For
further details we refer, for instance, to [12].

3 Gauge coupling β-function in the Standard Model to two-loop
order

As a non-trivial example of the application of IREG we will pursue the computation of the two-
loop coefficients for the gauge couplings β-function in the Standard Model. This improves the
analysis performed in [13] where the β-function for an abelian (QED) and non-abelian (QCD)
theory was studied.

For this end, we will adopt the conventions of [14] and use the background field method
[15, 16]. This allows us to only compute two-point functions, instead of three-point ones
needed in a standard computation. The generic topologies we are interested at can be seen in
fig. 1.

Figure 1: Two-loop topologies for two-point functions

whose amplitudes are of the form

AT1∝
∫

k,l

FT1(l, k, p)
k2(k− p)2l2(l − k)2

,

AT2∝
∫

k,l

FT2(l, k, p)
k2(k− p)2(k− l)2l2(l − p)2

,

AT3∝
∫

k,l

FT3(l, k, p)
k4(k− p)2l2(l − k)2

,

AT4∝
∫

k,l

FT4(l, k, p)
k2(k− p)2l2(l − p)2

,

AT5∝
∫

k,l

FT5(l, k, p)
k2l2(l − k+ p)2

. (6)

Notice that we are considering massless propagators since we will only be interested in the UV
divergent part of each amplitude.

The generic topologies will be filled with the particle content of the Standard Model by
using the model file already implemented in FeynArts [17] supplemented with an extension
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related to the QCD background field method. A drawback of this approach is that only the
theory on the spontaneously broken phase is available. Therefore, we will actually compute
the 2-loop corrections to ÃÃ, ÃZ̃ , Z̃ Z̃ , G̃G̃ where Ã, Z̃ , G̃ are the photon, Z-boson, and gluon
background fields. The connection to the B̃ and W̃ fields is straightforward [14]

ΠB̃B̃ = cos2 θ bare
W ΠÃÃ+ 2 sinθ bare

W cosθ bare
W ΠÃZ̃ + sin2 θ bare

W ΠZ̃ Z̃ (7)

ΠW̃W̃ = sin2 θ bare
W ΠÃÃ− 2 sinθ bare

W cosθ bare
W ΠÃZ̃ + cos2 θ bare

W ΠZ̃ Z̃ . (8)

As a check, we have explictly obtained W̃W̃ as well, which is identical to the value obtained
from the knowledge of ΠÃÃ, ΠÃZ̃ , ΠZ̃ Z̃ . To perform the computation, we made use of FormCalc
[18] as well as Package-X [19], which we embedded in our own routines. Since the number
of diagrams is substantial, we refrain to present individual results, and we just quote the end
result for the renormalization function of the background fields obtained in the context of
IREG

ZB̃B̃ = 1−
α1

4π

�

1
10
+

4
3

n f

� Ilog(λ2)

b
+

α1

(4π)2

�

−
9α1

50
−

9α2

10
+

17trT̂
10

+
trB̂
2
+

3tr L̂
2

−n f

�

19α1

5
+

9α2

5
+

44α3

15

�� Ilog(λ2)

b
(9)

ZW̃W̃ = 1−
α2

4π

�

−
43
6
+

4
3

n f

� Ilog(λ2)

b
+

α2

(4π)2

�

−
3α1

10

Ilog(λ2)

b

+
α2

6b2

�

144(I2
log(λ

2)− 2bI (2)log(λ
2)) + 547bIlog(λ

2)
�

+

�

3trT̂
2
+

3trB̂
2
+

tr L̂
2

�

Ilog(λ2)

b
− n f

�

3α1

5
+ 49α2 + 4α3

� Ilog(λ2)

b

�

(10)

ZG̃G̃ = 1−
α3

4π

�

−11+
4
3

n f

� Ilog(λ2)

b
+

α3

(4π)2

�

6α3

b2

�

9(I2
log(λ

2)− 2bI (2)log(λ
2)) + 35bIlog(λ

2)
�

+
�

2trT̂ + 2trB̂
� Ilog(λ2)

b
− n f

�

11α1

10
+

9α2

2
+

38α3

3

� Ilog(λ2)

b

�

. (11)

We have adopted the following conventions when writing our results [14]

α1 =
5
3

αQED

cos2 θW
, α2 =

αQED

sin2 θW
, α3 = αs, trX̂ =

αQED

2sin2 θW M2
W

n f
∑

i=1

m2
X i , (12)

where αQED is the fine structure constant, θW is the Weinberg angle, MW is the W-boson mass,
αs is the QCD strong coupling constant, mX i is the mass of the X -type fermion from the i-th
generation, and n f is the number of generations. We have also applied DREG and DRED,
whose results agree with previous calculations [14]. Nevertheless, for comparison with IREG,
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we quote it here as well

ZB̃B̃ = 1−
α1

4π

�

1
10
+

4
3

n f

�

1
ε

+
α1

(4π)2

�

−
9α1

100
−

9α2

20
+

17trT̂
20

+
trB̂
4
+

3tr L̂
4
− n f

�

19α1

10
+

9α2

10
+

22α3

15

�

�

1
ε

(13)

ZW̃W̃ = 1−
α2

4π

�

−
43
6
+

4
3

n f

�

1
ε

+
α2

(4π)2

�

−
3α1

20
+

259α2

12
+

3trT̂
4
+

3trB̂
4
+

tr L̂
4
− n f

�

3α1

10
+

49α2

2
+ 2α3

�

�

1
ε

(14)

ZG̃G̃ = 1−
α3

4π

�

−11+
4
3

n f

�

1
ε

+
α3

(4π)2

�

51α3 + trT̂ + trB̂ − n f

�

11α1

20
+

9α2

4
+

17α3

3

��

1
ε

. (15)

Some comments are in order: 1) when extracting the renormalization constants, we ob-
tained that the end result is transverse, illustrating that IREG complies with non-abelian gauge
invariance (see [13] for a more detailed analysis); 2) DREG and DRED differs in intermediate
terms, but the final result is identical to each other as it should be (both subtraction schemes
DR and MS are mass-independent [20]); 3) counterterms for quantum fields are not needed
as first discussed in [15], however, since we adopted the Feynman gauge, the renormalization
for the gauge fixing was required.

Regarding the treatment of chiral fermions, we have applied two procedures available
within FormCalc. The first was just the naive scheme for γ5, which implies that the γ5 matrix
could be anticommuted freely. In the second procedure we replaced γ5 by its definition as

γ5 = −
i

4!
εabcdγ

aγbγcγd , (16)

performed Dirac algebra together with contractions of the Levi-Civitá symbols that appear.
Given the increased number of Dirac matrices, the second procedure demands more compu-
tational power. Both procedures amount to the same end results. We emphasize that none
of the procedures is completely consistent in general. For the first procedure this is clear; for
the second one the reason boils down to the use of identities involving Levi-Civitá symbols
which in the context of IREG generates terms like k2. However, since symmetric integration is
not allowed in general in the method, such terms should be written as gabkakb instead which
stands for enforcing the regularization before performing Lorentz contractions. For a more
detailed discussion of these points we refer the reader to [6, 21]. Finally, we would like to
mention that ambiguities in the gauge couplings β-function in the Standard Model may arise
only at four-loop level, at least in the context of dimensional methods [22]. Since the issues
that IREG must face in the presence of γ5 are similar to the ones encountered in dimensional
methods, we also expect that only at higher loop order (potential) ambiguities may arise.

To conclude this section, we present the gauge coupling β-function up to two-loop order
obtained within the IREG framework. We adopt the same conventions of [14]

βi = λ
2 d

dλ2

αi

π
= −

αi

π
λ2 d

dλ2
ln Zαi

=
αi

π
λ2 d

dλ2
ln ZX i

, (17)

where X i denotes the background field corresponding to the coupling αi . Moreover, we can
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write

ZX i
= 1+

αi

4π
Ai +

∑

j

αiα j

(4π)2
Ai j (18)

βi =
� αi

4π

�2



βi +
∑

j

α j

4π
βi j



 . (19)

It is straightforward to obtain the relations, valid for IREG [13],

βi = 4λ2 d
dλ2

Ai; βi j = 4λ2 d
dλ2

Ai j . (20)

Finally, using Eqs. 9-11, yields

β1 =
α2

1

(4π)2

�

2
5
+

16
3

n f

�

+
α2

1

(4π)3

�

18α1

25
+

18α2

5
−

34trT̂
5
− 2trB̂ − 6tr L̂

+n f

�

76α1

15
+

12α2

5
+

176α3

15

��

(21)

β2 =
α2

2

(4π)2

�

−
86
3
+

16
3

n f

�

+
α2

2

(4π)3

�

6α1

5
−

518α2

3
− 6trT̂ − 6trB̂ − 2tr L̂

+n f

�

4α1

5
+

196α2

3
+ 16α3

��

(22)

β3 =
α2

3

(4π)2

�

−44+
16
3

n f

�

+
α2

3

(4π)3
�

−408α3 − 8trT̂ − 8trB̂

+n f

�

22α1

15
+ 6α2 +

304α3

3

��

. (23)

As can be seen, we recover known results obtained in the context of dimensional methods
in a minimal subtraction scheme [14]. This was expected since in both cases a subtraction
scheme independent of the mass was used, which implies that up to two-loop order the gauge
coupling β-function is renormalization scheme independent [20].

4 Conclusion

In the last years we have witnessed an unprecedented amount of data collected in the LHC.
Since no clear sign of Beyond Standard Model (BSM) Physics has emerged, it is required to
know the Standard Model predictions with great precision to clear disentangle the possible
BSM contributions. In order to tackle this task, innovative techniques have emerged, some of
those proposing distinct regularization methods which aim to stay in the physical dimension
as far as possible. Among those, Implicit Regularization is a promising candidate, aiming to
perform regularization at integrand level. It has been shown to comply with unitarity, Lorentz
invariance, causality, and abelian gauge symmetry in general, while it complies with non-
abelian gauge invariance in working examples. In this contribution, we apply the technique
for the first time in the Standard Model, which is a spontaneously broken chiral non-abelian
theory. We have obtained the two-loop gauge coupling β-function, reproducing the results
known when applying dimensional regularizations. This proves as a consistent test of the
technique, since up to two-loop level the gauge coupling β-function is universal to any mass-
independent subtraction scheme.
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