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Forward trijet production and saturation
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Abstract

We present a multi-parton extension of the so-called small-x Improved Transverse Mo-
mentum Dependent (ITMD) factorization for hadroproduction of three or more jets in
the forward rapidity region, allowing to study gluon saturation using such processes.
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1 Introduction

Small-x Improved Transverse Momentum Dependent (ITMD) factorization [1] accounts for
gluon saturation effects, off-shell hard matrix elements, and involves several transverse mo-
mentum dependent (TMD) gluon distributions. It can be understood as a generalization of
kT -factorization, also called high energy factorization, which focuses on events for which small
fractions x of the total scattering energy enter the hard process, while not neglecting powers of
the initial-state transverse momenta kT [2,3]. Thus, the incoming partons have non-vanishing
transverse momentum, and the initial-state momenta entering both the PDFs and the matrix
elements are space-like rather than light-like. The TMD PDFs are also called unintegrated PDFs
in this context. The corresponding evolution equations typically resum logarithms of 1/x .

For linear evolution equations of this type, gluon densities can grow power-like with energy,
eventually violating unitarity. QCD predicts a cure via a nonlinear equation, called the BK
equation [4, 5], which exhibits gluon saturation, i.e. a state in which almost all gluons have
momenta of the size of the saturation scale Qs. It is the mean field approximation to the more
general B-JIMWLK system of equations [4,6–8], which describe the evolution of various gluon
operators supplemented with Wilson lines, which have very different behavior for small kT
but coincide (or vanish very quickly) in the linear regime at large kT �Qs.

Color Glass Condensate (CGC) theory is a QCD-based model that incorporates this satu-
ration (see e.g. [9]). In dijet phenomenology at LHC, with a hard scale of at least around
15 GeV and at sufficiently forward rapidity, one is sensitive to saturation. In that regime,
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many simplifications with respect to CGC theory occur leading to an effective TMD factoriza-
tion with several small-x leading power TMD gluon distributions containing various Wilson
line operators ensuring gauge invariance and resumming collinear gluons. By keeping the in-
coming gluon off-shell in the amplitude, the kinematic twist corrections are incorporated and
one has a full description of the jet imbalance. This ITMD factorization is equivalent to CGC
expressions for dilute-dense collisions [10] with all kinematic twist corrections isolated and
resummed, while neglecting the genuine twist corrections [11].

Here, we present the extension of ITMD to three or more jets. The operator structures
for three-and four-jet processes have been explicitly calculated in [12]. As presented here,
the ITMD formalism does not account for the linearly-polarized gluons in unpolarized targets.
Such a contribution is absent in CGC theory for massless two-particle production, but appears
in heavy quark production [13, 14] and has been already observed in the correlation limit
for the three-parton final state [15]. Therefore, in the following the extension of ITMD to
multipartonic processes will be denoted ITMD*.

2 The formalism

The ITMD* formula of forward particle production, where a dilute proton p (probed at large
x) collides with a dense target A (probed at small x) is given by:

dσpA→n =

∫

d x1

x1

∑

a

x1 fa/p(x1,µ)
d x2

x2

∫

d2kT

π
dΦnJ

∑

b1,...,bnJ

�

�Mag→b1...bnJ

�

�

2
ITMD∗

fluxag→b1...bnJ

, (1)

where fa/p is the collinear PDF for parton a, where dΦnJ
is the nJ -particle differential phase

space, and where b1, . . . , bnJ
are the various final state partons contributing to the partonic

sub-process ag → b1 . . . bnJ
. The factor fluxag→b1...bnJ

is assumed to contain the flux factor,
the factors to turn the summations implied by the matrix element into averages regarding the
initial-state partons, and the necessary factors in case there are identical final-state particles.
The matrix element is given by

�
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�
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ITMD∗ = (N

2
c − 1)
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∑
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j1 j2··· jn
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̄1 ̄2··· ̄n

�

×
­­

2
�

F̂+(ξ)
� j1

i1

�

F̂+(0)
� ̄1

ı̄1

�

U [λ2]
�

i2 ı̄2

�

U [λ2]†
� j2 ̄2
· · ·
�

U [λn]
�

in ı̄n

�

U [λn]†
� jn ̄n

··

. (2)

Here, M̃i1 i2···in
j1 j2··· jn

is the parton-level scattering amplitude in the incarnation of the colorflow
representation as given in [16, 17]. Such a representation treats gluons on the same footing
as quark-antiquark pairs in the color sum. The symbol n is the number of color-pairs in this
representation, so the number of gluons plus the number of quarks, where the latter is equal
to the number of antiquarks. The field strength operators F̂+ are separated in the light-cone
‘minus’ and transverse directions ξ =

�

ξ+ = 0,ξ−, ~ξT

�

. The symbols U [λ] denote two staple-
like fundamental representation Wilson lines connecting the fields

U [±] =
��

0+, 0−, ~0T

�

,
�

0+,±∞−, ~0T

�� ��

0+,±∞−, ~0T

�

,
�

0+,±∞−, ~ξT

��

×
��

0+,±∞−, ~ξT

�

,
�

0+,ξ−, ~ξT

��

, (3)

where the square brackets are the straight segments of the Wilson link. The value λ = ±
depends on whether the parton whose color the Wilson link connects is incoming or outgoing.
The Wilson loop obtained by two staples glued together is denoted

U [�] = U [−]†U [+] . (4)
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The angular double brackets denote the Fourier transform of the hadronic matrix element:
­­

· · ·
··

= 2

∫

dξ−d2ξT

(2π)3 P+
exp

�

i x2P+ξ− − i~kT · ~ξT

�

〈P| · · · |P〉 , (5)

where P+ is the longtudinal ‘plus’ momentum component of the hadron. In this Fourier trans-
form, the variables x2 and ~kT from Eq. (1) appear. One feature of the chosen color represen-
tation is that the amplitude decomposes as

M̃i1 i2···in
j1 j2··· jn

=
∑

σ∈Sn

δ
i1
jσ(1)
δ

i2
jσ(2)
· · ·δin

jσ(n)
Aσ , (6)

where the partial amplitudes Aσ only depend on momenta, helicity, and the permutation σ,
but not on color. They can be calculated using color-ordered Feynman rules. Inserting this
decompostion, Eq. (2) collapses to

�

�Mag→b1...bnJ

�

�

2
ITMD∗ = (N

2
c − 1)

∑

σ∈Sn

∑

τ∈Sn

A∗σ Cστ(x2, kT )Aτ , (7)

where the entries of the “TMD-valued color matrix” Cστ(x2, kT ) consist of exactly a single
power of Nc times one of the following 10 TMDs

F (1)qg (x , kT ) =
­­

Tr
�
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�

··

, (8)
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Below is the explicit example of the matrix Cστ(x2, kT ) and the column vector of partial am-
plitudes for both the processes g∗1 q2 → q4 q̄′3 q′5 and g∗1 q2 → q4 q̄3 q5:





















0 0 0 0 0 0
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














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
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







A12345

A21345
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








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

. (18)
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The processes have 3 color pairs, so there are (at most) 3! partial amplitudes. They are explic-
itly labeled with their associated permutation, and the logic in the enumation of the partons
is that gluons come first, then anti-quarks, and then quarks. Initial-state quarks count as
negative-energy antiquarks. As can be seen, the first and last partial amplitudes do not con-
tribute at all, but are included here for clearity. For processes with only gluons, the number of
contributing partial amplitudes is only (n− 1)! rather than n!.

In order to evaluate the TMDs necessary for trijet production, the same path as in [18]
can be employed. The starting point is the so-called dipole distribution (8), which appears
in inclusive DIS processes. In particular, one can use the TMD coming from the BK equation
augmented with subleading corrections following the framework of [19] and fitted to F2 data
[20]. Having the dipole gluon distribution, all other distributions appearing in trijet production
can be calculated in the mean field approximation often used in CGC theory and to leading
number of colors.

3 Conclusion

We gave a concise description of the ITMD* formalism for multi-jet production at hadron
colliders, which allows to study saturation in these process. Such a study was performed
recently in [21], where various azimuthal angle distributions for three jets produced in the
forward rapidity region were calculated for proton-proton and proton-lead collisions.
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