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Abstract

Pseudo-data with simulated experimental errors can be generated to train an ensemble
of Artificial Neural Networks (ANN) implemented on a regression to extract Transverse
Momentum-dependent Distributions (TMDs). A preliminary analysis is presented on
the reliability in extraction of the Sivers function imposed in the pseudo-data given the
bounds on the experimental errors, data sparsity, and complexity of phase-space.
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1 Introduction

Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs) can be extracted
from the processes that are corresponding to multiple kinematic scales such as Drell-Yan (DY),
Semi Inclusive Deep Inelastic Scattering (SIDIS), and e* e annihilation. Therefore, the cross-
sections (or differential cross-sections) measured from these processes are sensitive to the
transverse momentum of partons, especially the magnitude of that momentum correspond-
ing to non-negligible non-perturbative interactions. The original proposal for TMD PDFs was
introduced by Collins, Soper, and Sterman [1-3]. PDFs provide f(x) the parton density in-
terms of light-cone momentum fraction (x), whereas TMD PDFs provide f (x,k, ) the parton
density as a function of both light-cone momentum fraction and transverse momentum. There
are eight TMD PDFs at the leading-twist, or in other words twist-2 approximation: O (1/ QZ),
which can be classified in terms of quark-polarization and nucleon-polarization (see Figure
(1)). Among those eight TMD PDFs, there are two time-reversal odd TMDs, namely Sivers
function & Boer-Mulders function, which represent the correlation between the spin of the
quark and the spin of the hadron. The Sivers function corresponds to the polarized hadron,
and the Boer-Mulders function corresponds to the unpolarized hadron.

Sivers [5, 6] suggested that the k| distribution could have an azimuthal asymmetry when
the initial hadron is transversely polarized, but this is in contradiction only with "Parity" and
"Time-reversal" invariance (PT) of QCD. In other words, this asymmetry does not exist accord-
ing to the PT invariance of QCD. The Sivers function is the correlation between unpolarized
quarks in a transversely polarized nucleon. It vanishes by its naive definition [7].
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Figure 1: Left: Leading twist TMDs categorized according to the polarization of the
quarks and the nucleons. Right: Semi-inclusive hadron production in DIS processes

(4]

2 Sivers asymmetry from SIDIS

In Semi Inclusive Deep Inelastic Scattering (SIDIS) process, the differential cross-section de-
pends on both collinear parton distribution functions f,,,(x) and fragmentation functions
Dy,4(2), where q is the quark flavor, p represents the target proton, h is the hadron type pro-
duced by the process and z is the momentum fraction of the final state hadron with respect to
the virtual photon. A simplified version of the SIDIS differential cross-section can be written
as,

dSO.lp—>th

2 2 2y F
dxdQ2dzd2py, o< Zq:eq J d°k; K(x, ppr> Q) fqspt (%, k1 )Dpye(z,p 1)+ O (k1 /Q), (1)
where K(x, ppr,Q?) represents the factorized kinematical factor. fq(x,k 1) is the unpolarized
quark distribution with transverse momentum k, inside a transversely polarized (with spin S)
proton with 3-momentum:

A 1 N
farpr G, k) = fop(c, k) + EAqu/pT(xa k1)S.(pxk) (2)

and AV fq/pt(x, k) is the Sivers function which contains the effect on quarks due to the spin-
polarization of the proton. The Sivers asymmetry in SIDIS process (see Fig.[1]) can be written
in terms of the cross-sections as,

do!P=hiX _ qolip=hX q5 1 —do |

sin(¢p—¢s) = =
A (6 Y02, Phr) = S R T o =hE = 4 T+do |’ ©

which can be parameterized as [8],

)+ IR’ T s ()= ()

[2k2) + P2)I02)2 | (22062) + (02)) (2202 + (p2))
V3o 2 prp L Ng€Fy(X)Dyq(2)

M, 3, (D)

AS[;r’;Sd)h_qu)(xJ yﬁzzphT) =

(4)

where, ¢g, ¢, are azimuthal angles of the final state hadron and the transverse polarization
vector of the nucleon with respect to the lepton plane; and Py is the transverse momentum
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of the final state hadron with respect to the virtual photon in the center-of-mass of the virtual
photon and the nucleon. The TMD Fragmentation Functions are parameterized as,

e—Pi/(Pi) , (5)

1
Dy/q(2,p1) = Dyjq(2)
/q /q TE(Pi)

where Dy/,(z) is the fragmentation function for a quark with flavor q in a hadron type h.

2/(1.2
(k%) = M <Z‘k2))- and (k7), (p?) were fixed to 0.57 + 0.08 GeV?, and 0.12 % 0.01 GeV? as
in [8] by ﬁttmg to the multiplicities from HERMES data. Assuming the Gaussian factorized

form [8, 9], the unpolarized TMDs and the Sivers function can be parameterized as,

eKL/KD), 6)

furne k) = £,
L

Aqu/pT = qu(x)h(kJ_)fq/p(x’ kL)’ (7
where,

+ (ag+Bqy)
N=qu“Q(1—x)ﬂqM, (8

Aq aPq
ag" B

hky) = 2e = kL kML 9)

sin(¢p—¢

Therefore, one can simplify A}, § )(x, ¥,%,Pnr) as follows,

o SN G2, (x)Du (2)
sin(¢p—¢s) _ q° "4 q’4 q
AUT (x’.y)z’phT) - AO(Z)phTaMl)( Zq e(%fq(X)Dh/q(Z) ) P (10)
where
203 + (R p2. 22 ({k2) — (k2)) Y
Ao P M) = o o ) P | T + ) ) + o) |

(11

fq(x) is the co-linear parton distribution function for flavor g that was obtained from CTEQ6I
LHAPDF [10], whereas the fragmentation functions for n*° K* are also extracted from
NNFF10 nlo grids which are also available on LHAPDF [11]. There are 13 fitting parame-
ters: Mj, N, e Ags [5q, , Where ¢ = u,d,s and § = ia,d,s; and the fitting routine is iminuit
(python version of MINUIT) [12]. Two main differences of this work compared to [8] are: (1)
LHAPDF grids for FFs (NNFF10_nlo) were used instead of the DSS implementation, (2) s and
§ quark-flavors were considered. Sivers asymmetries data on the SIDIS process, from HERMES
(2009) [13] and (2020) [14] were used in this analysis, with the plan of extending the effort
towards including all available data from different experiments. Furthermore, a step-forward
has been taken to remove the model dependence behavior of NV, (x) using Neural Network
approach.

3 Modeling quark contribution with Neural Network

The lack of a satisfactory formulation for the quark contribution leads us to desire an unbiased,
trainable model for this aspect of the Sivers asymmetry equation. Thus, in this work N,(x)
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is being considered in a model-independent fashion. Neural networks are known to be able
to adapt any arbitrary function through the universal approximation theorem [15], and thus
are ideal for this application. In this study, we used multilayer feed-forward neural network
models to approximate the quark contribution.

These in general operate by receiving inputs to the network, in this case, the kinematic
variable x. These variables and a trainable matrix of "weights" are convoluted to comprise a
hidden layer. To enable the network to approximate non-linear functions, a non-linear activa-
tion is applied to the outputs of this intermediate layer. Then these outputs are passed to the
next hidden layer, and the process is repeated for an arbitrary number of layers. For the last
step of this "forward pass," the outputs of the penultimate layer are passed to the output layer,
and the estimate for the target value is obtained. No activation function is applied to the final
layer because this is a regression problem.

In training the network, the "backward pass" is used to update the weights of the network
with a loss function, which is a measure of how well the network fits the data. The partial
derivative of the loss function with respect to each weight in the network is computed, then
the weights are adjusted to reduce the magnitude of the loss function. In this problem, we
have no direct experimental values for the quark contribution at different values of x. Thus,
we propagate the outputs of the network through a computational graph (displayed in fig. 2)
that computes the entire Sivers function. Then, the weights for the neural network for each
quark flavor are updated using the experimental observations of Sivers asymmetries in differ-
ent kinematic ranges.

The inputs of the computational graph are x,z,andp,r. The PDFs and FFs are generated
for the corresponding kinematic values, using LHAPDF outside the computational graph. They
are then taken as inputs to the graph along with the kinematics. Specifically, 62 fq(x)Dy 4(2)
is calculated for each kinematic setting and fed as an input to the computational graph. It is
necessary to calculate these expressions independently of the graph because neither the PDFs
nor the FFs as taken directly from LHAPDF are automatically differentiable with TensorFlow.
These inputs are then passed through the Sivers function as usual, except the neural networks
which model the quark contribution for each flavor. These neural networks are each comprised
of two dense layers with 32 nodes and ReLU activations. There is a separate network for each
quark flavor.
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Figure 2: Entire TensorFlow computational graph with kinematics as inputs and
Sivers asymmetry as output. Each N, is a neural network model.

4 Results

The fits to the kinematic sets have been performed using iminuit (see Table [1]). The neural net
has been trained using the HERMES2009 data set. The asymmetry plots HERMES2020 for the
NN are predictions which have been compared with the real data. Table [2] summarizes the
x2/dof’s to compare how well the Sivers asymmetries (with respect to x, z, P,7) are described
by iminuit fits as well as by the Neural Network.

Table 1: Individual fit (iminuit) results with HERMES2009 & HERMES2020 data.
Note: The acceptance in HERMES2020 in x was 0.023 < x < 0.6 whereas the cor-
responding range in HEREMES2009 was 0.023 < x < 0.4. Also, in HEREMES2020
three-dimensional kinematic binning was considered compared to one-dimensional
kinematic binning in either x,z,orP;,; in HERMES2009.

Parameter HERMES 2009 HERMES2020
M, 1.303 £ 0.010 7.590 + 0.008
N, 0.169 =+ 0.002 0.960 + 0.084
a, 0.645 + 0.125 2.291 £ 0.200
B, 3.122 + 2.661 9.826 + 1.556
N, 0.007 + 0.003 0.205 + 0.02
Ny - 0.434 £ 0.005 -4.713 £ 0.004
oy 1.777 £ 0.909 0.482 + 0.866
Ba 7.788 + 2.144 (5.675 £ 6.45) x107°
N; -0.142 £ 0.048 1.490 £ 0.05
N, 0.563 £ 0.073 4.528 + 0.073
a (6.84 £10.00) x10™> | (1.745+9.20) x10~°
Bs (5.987 £ 8.77) x1071% | (6.082 % 9.55) x10~1°
N; -0.122 + 0.504 8.692 + 0.46
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Figure 3: The extracted Sivers functions (at Q? = 2.4 GeV?) for the valence & sea
quarks in the case of SU(3) 4y Dy iminuit fits (first two columns: for HERMES2009
& HERMES2020 accordingly, and the third column: Neural Net fit to HERMES2009

data).
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Figure 4: Sivers asymmetry fit results (at Q* = 2.4 GeV?) of ™, n°, K" (columns)
for HERMES2009 (first row), HERMES2020 (second row), and the projected asym-
metry values for HERMES2020 kinematics from the Neural Net model trained on

HERMES2009 data (third row).
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Table 2: Fit results ( ;(2 /ndata values) for HERMES2009 and HERMES2020

Hadron Dependence | ndata x?/ndata x?/ndata(NN) | ndata x?/ndata x2/ndata(NN)
HERMES2009 HERMES2020
ot x 7 2.53 2.29 8 2.12 2.23
nt b4 7 1.02 1.01 11 1.49 1.63
mt Phr 7 5.23 3.40 8 1.14 2.07
T x 7 1.94 3.13 8 1.81 2.82
o Z 7 2.45 0.52 11 1.16 0.57
o Dhr 7 1.61 1.96 8 1.20 1.44
n° x 7 0.85 0.90 8 0.40 0.50
n° z 7 1.11 1.13 11 0.95 0.97
0 Phr 7 2.00 1.61 8 0.50 0.73
K* 7 1.22 1.78 8 0.48 1.45
K* Z 7 2.97 3.69 11 6.31 7.99
K* Phr 7 2.65 1.29 8 1.26 2.45
K~ x 7 0.49 0.52 8 0.26 0.54
K~ Z 7 0.52 0.57 10 0.93 1.11
K~ Dhr 7 0.96 0.73 8 0.79 2.93
Total 105 1.84 1.64 134 1.477 2.02

5 Conclusions & Future work

The fit results to HERMES2009 data using iminuit & neural net model are consistent, there-
fore the NN trained model was used to generate the Sivers asymmetries for HERMES2020
Kinematics and compared with actual HERMES2020 data. It was observed that the inclusion
of the strange quark contribution not only facilitates the fits but also describes a consistent
behavior of the Sivers function. It is important to note that the HERMES2020 results from the
neural network serve as a test set, as the model was trained only on HERMES2009 data. Such
results could indicate over-fitting the HERMES2009 data which could be resolved in future
work by incorporating further data sets. Performing the global fits with HERMES, COMPASS
(SIDIS data) is currently ongoing and will be published. The results indicate that the neural
network representation of the quark contribution offers a promising alternative approach to-
wards model-independent nature and could provide a path toward reducing uncertainties in
the Sivers functions because there is a clear need for data and constraining using the Drell-Yan
process, and for both Sivers and Boer-Miilders functions.
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