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Abstract

Considering a dilute-dense situation suitable for pA collisions, we compute in the Color
Glass Condensate the correlation between azimuthal asymmetries, specifically the squa-
red second Fourier coefficient v2

2 , and the total multiplicity in the event. We also analyse
the correlation between v2

2 and the mean squared transverse momentum of particles in
the event. In both cases, we find that the correlations are generally very small, consistent
with the observations. We also note an interesting sharp change in the value of v2

2 and
its correlations as a function of the width of the transverse momentum bin, related with
a change of the dominance of Bose and HBT quantum correlations.
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1 Introduction

The measurement at the LHC and RHIC of many observables that behave similarly in small
collision systems, pp and pA, and in heavy ion collisions, named the small system problem,
is one of the key recent findings on the strong interaction, see [1] and refs. therein. Among
these features, the most celebrated one is the ridge: a maximum in two particle correlations
elongated along pseudorapidity and peaked at zero and π azimuthal angle. While in heavy
ion collisions such azimuthal asymmetries are taken as signatures of a collective expansion
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describable by relativistic viscous hydrodynamics, in small systems this final state explanation
looks tenuous and initial state ones have been essayed, see [2] and refs. therein.

Concerning correlations between azimuthal asymmetries and global characteristics of the
event, the ridge in small collision systems seems to be almost independent of the multiplicity
in the collision [3]. Furthermore, the correlation of azimuthal asymmetries with the average
transverse momentum has been proposed as sensitive to the initial geometry in the collision
and to the initial or final dynamics underlying the correlations [4–6], and measured in [7].

The aim of this contribution is to present and discuss the results on such correlations ob-
tained in the framework of the initial state explanations provided by the CGC, see [2]. In the
CGC correlations come from the Bose enhancement of gluons in the wave function of the col-
liding hadrons and the HBT correlations of finally produced gluons [8,9]. The work is based in
the formalism developed in [10] to compute two and three gluon correlations in pA collisions.
Here we show and discuss the main results, referring the reader to [11] for full details.

2 v2
2 and correlations

In the CGC, the number of produced gluons reads
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ρp(p) a given configuration of the color charged density in the projectile, and U(q) the eikonal
scattering matrix – adjoint Wilson line – for scattering of a single gluon on a fixed configuration
of target fields. The target Wilson lines implicitly depend on the target color sources, ρt.

Single inclusive and double inclusive gluon production are computed as
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(3)
where the averaging is performed over the projectile and target color charge configurations.

The total multiplicity N per unit of rapidity and mean transverse momentum squared per
particle k2 are calculated as (

∫

φ
≡
∫

dφ,
∫

k ≡
∫
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N =

∫

k
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, k2 =

1
N

∫

k
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, (4)

and the azimuthal flow harmonics v2
n defined as

v2
n(k1, k2)≡

∫

φ1,φ2

ein(φ1−φ2) d2N (2)

d2k1d2k2

�∫

φ1,φ2

d2N (2)

d2k1d2k2
, (5)

where φ1, φ2 are the azimuthal angles of the corresponding transverse momenta. Below, we
focus on v2

2 only. In this framework, each collision event corresponds to a fixed configuration
of ρp and ρt , with the averaging introduced in (3) being equivalent to averaging over all
possible events.

Studying the dependence of any observable on multiplicity would require to select from
the total ensemble only events with total multiplicity in some multiplicity bin and calculate the
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observable by averaging only over those events. In practice this has not yet been accomplished,
so we choose to compute the correlation between v2

2 and N , i.e. 〈〈v2
2 (k1, k2)|ρp ,ρt

N |ρp ,ρt
〉p〉t ,

and similarly between v2
2 and the squared transverse momentum per particle. The averaging

in these expressions goes over the whole ensemble of events, and thus there is no need to
consider particular sub ensembles. For that we make use of the results for two and three
gluon inclusive production in pA collisions obtained in [10].

Our calculation is done using the MV model [12,13] for projectile ensembles that we con-
sider translationally invariant, and taking only leading contributions in the number of sources
(i.e., Q2

s S⊥, the squared saturation scale times the overlap area of the collision) [14, 15], see
also the talk by P. Agostini in this workshop. We work at leading order in the number of colours
and use the GW model for the target average of two Wilson lines [16]. In order to proceed
analytically as far a possible, we compute the results at leading power of Q2

s /k
2
i , with ki the

transverse momenta of the measured final gluons, thus only valid for Q2
s /k

2
i � 1. Besides,

we take only the leading correlated pieces in the two and three gluon inclusive cross section,
denoted below by Q and X below, respectively. Finally, when required we use an IR cutoff
λ∼ 1/(Q2

s S⊥)∼ 1/25 (the results show small sensitivity to the exact value of this cutoff).
The correlators that we compute are defined:
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with additional integrals over k2 and k3 in regions [k−∆/2, k+∆/2] and [k′−∆/2, k′+∆/2],
respectively, with k, k′ � ∆ ∼ Qs, both in numerators and denominators. Full explanations
and detailed expressions can be found in [11].

3 Numerical results

In all our results we plot momentum in units of Qs and the quantities of interest multiplied
by (N2

c − 1)S⊥Q2
s (∼ 200 for pPb collisions) in order to exhibit the universal features of the

results applicable to any target (any Qs) and projectile (any S⊥). We explore the interplay
between the relative position of the centres of the two bins, k and k′ and the bin width ∆. v2

2
receives contributions from two types of correlations: Bose and HBT. The width of the former
in momentum space is naturally of order Qs, while the latter have much shorter range (we
took them as delta functions). Thus we expect that when |k− k′|<∆ both the HBT and Bose
effects will contribute to v2

2 . However, when there is no overlap between the two bins, the
HBT correlation should disappear. We thus expect a steep variation when k− k′ ≈∆.

Fig. 1 shows our results for v2
2 . The left panel shows the huge dominance of the HBT

contribution, by a factor ∼ 50, and the different transverse momentum dependence of Bose
and HBT, while the right panel demonstrates the expected sharp change in v2

2 at the point
when the width of the interval equals the distance between the interval midpoints.

Fig. 2 shows our numerical results for the correlation function between v2
2 and the to-

tal multiplicity (a similar behaviour is found for the correlation of v2
2 with average squared

transverse momentum). Fig. 2 left shows that the normalised correlation function is strongly
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Figure 1: Left panel: The second flow harmonic, v2
2 (rescaled by (N2

c − 1)S⊥Q2
s ),

as a function of transverse momentum. The calculation of v2
2 is performed for two

cases: a) the same momentum of the pair (solid blue line), b) the momentum of the
pair is offset by the saturation momentum of the target in order to avoid the gluon
HBT effect (multiplied by 100, dashed orange line). The bin width in both cases is
∆ = Qs/2. Right panel: The second flow harmonic, v2

2 (rescaled by (N2
c − 1)S⊥Q2

s ),
as a function of the bin width. The centres of the two bins are chosen at k = 4.5Qs,
k′ = 5Qs.

suppressed for values of bin width for which v2
2 is sizeable, which is when the HBT effect

in v2
2 is dominant. The same effect is also demonstrated in Fig. 2 right, where we show the

correlation function as a function of the bin width ∆.
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Figure 2: Id. to Fig. 1 but for the three particle correlation function 〈v2
2 N〉 defined

by the normalised correlations between v2
2 and the total multiplicity of produced

particles.

Finally, Fig. 3 shows R≡ 〈v2
2 k2〉/〈v2

2 N〉 as a function of transverse momentum. The corre-
lation with transverse momentum clearly drops slower than the correlation with multiplicity.
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Figure 3: The ratio R≡ 〈v2
2 k2〉/〈v2

2 N〉 as a function of transverse momentum.
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4 Conclusion

In this contribution we have examined [11] the correlation between v2
2 and the total multiplic-

ity and the squared transverse momentum per particle, in the CGC approach to multi gluon
correlations in pA collisions [10]. We use several approximations, discussed in Sec. 2, to
make the problem tractable at an analytical level. By examining v2

2 and the mentioned cor-
relations in different bins of transverse momenta, we find that v2

2 is dominated by the HBT
correlation which disappears when the bins are not overlapping and solely Bose correlations
contribute. Both contributions show different transverse momentum dependences. The oppo-
site behaviour is found for the correlations, which are suppressed in those regions where the
HBT contribution is dominant. The apparent strong dependence of the correlation results on
small changes in transverse momenta is due to the assumption on translational invariance of
the projectile that we have employed. While our results contain many approximations and we
do not aim for their phenomenological application, we observe the smallness of the correla-
tions between v2 and N consistent with experimental data [3].
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