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Abstract

We discuss photon-photon fusion mechanisms of dilepton production in proton-proton
collisions with rapidity gap in the main detector and one forward proton in the for-
ward proton detectors. This is relevant for the LHC measurements by ATLAS+AFP and
CMS+PPS. Transverse momenta of the intermediate photons are taken into account and
photon fluxes are expressed in terms of proton electromagnetic form factors and struc-
ture functions. Both double-elastic and single-dissociative processes are included in the
analysis. Different parametrizations of the structure functions are used. Some differ-
ential distributions are presented. Some differences with respect to the results without
proton measurement are discussed.
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1 Introduction

Only recently the CMS collaboration [1] and very recently the ATLAS collaboration [2] pre-
sented results with at least one proton measured in forward direction. The experimental apara-
tus allows to measure only very forward protons. In theoretical calculations one has to impose
experimental limits on so-called ξ-variables (longitudinal momentum fraction loss) [1,2].

The results presented here (DIS2021) is based on our recent paper [3]. In our calculations
we use the formalism developed in [4–6], which allows to calculate the cross section differ-
ential also in MX or MY , masses of the excited proton remnants. In [7, 8] it was discussed
how to calculate gap survival factor which is related to emission of (mini)jets produced in a
DIS process associated with W+W− and t t̄ production, respectively. We shall repeat such a
calculation also here for µ+µ− production. The absorption for double-elastic contribution was
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Figure 1: Four different categories of γγ fusion mechanisms of dilepton production
in proton-proton collisions.

studied e.g. in [9,10] using the momentum space formalism. The impact parameter approach
can be found e.g. in [11].

2 Basic formalism

There are four categories of the γγ processes as shown in Fig.1. We call them elastic-elastic,
inelastic-inelastic, elastic-inelastic and inelastic-elastic. The double inelastic contribution is
not included when proton is measured.

In the kT -factorization approach [4, 5], the cross section for production of l+l− can be
written in the form

dσ(i, j)

d y1d y2d2p1d2p2
=

∫

d2q1

πq2
1

d2q2

πq2
2

F (i)
γ∗/A(x1,q1)F

( j)
γ∗/B(x2,q2)

dσ∗(p1, p2;q1,q2)
d y1d y2d2p1d2p2

,

(1)

where the indices i, j ∈ {el, in} denote elastic or inelastic final states. Here the photon flux for
inelastic case is integrated over the mass of the remnant.

The ATLAS collaboration analysis imposes special condition on:

ξ1 = ξ
+
l l , ξ2 = ξ

−
l l . (2)

The longitudinal momentum fractions of the photons were calculated in the ATLAS analysis
as:

ξ+l l =
�

Ml l/
p

s
�

exp(+Yl l) ,

ξ−l l =
�

Ml l/
p

s
�

exp(−Yl l) . (3)

Only lepton variables enter the formula.
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Figure 2: Two-dimensional distribution in (Ml l , Yl l) for double-elastic contribution
(upper row) and single dissociative (lower row). Here we have imposed experimen-
tal condition on ξ2 (left panel) or ξ1 (right panel) as explained in the main text. The
pt,µ > 15 GeV condition was imposed in addition. The Szczurek-Uleshchenko struc-
ture function parametrization was used here for the single dissociative contribution
for illustration.

3 Selected results

3.1 Our programs

The measurement of protons has strong influence on many fully leptonic observables. In Fig. 2
we show two-dimensional distributions in (Ml l , Yl l) for fully elastic (upper panels) and single-
dissociative (lower panels) contributions. A big part of the phase space is not accessible kine-
matically which is related to the cut on ξ’s.

In Fig.3 we show a projection on Yl l . One can observe a dip at Yl l ≈ 0 which is due to the
imposed cuts. When the cuts are removed the dip is not present [3].

Many other distributions were discussed in [3].

3.2 SuperChic

In this subsection we show results obtained using the SuperChic-4 generator [12].
In Fig.4 we show corresponding gap survival factor calculated as:

SG(Yl l) =
dσ/dYl l |withSR

dσ/dYl l |withoutSR
(4)

as a function of Yl l variable.
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Figure 3: Distribution in dilepton rapidity for four different contributions considered.
Here the cuts on ξ+l l or ξ−l l are imposed. The solid line is for double elastic contribution
and the dashed line is for single dissociation contribution.
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Figure 4: The soft gap survival factor as a function of rapidity of the µ+µ− pair for
single proton dissociation. We show the result without ξ cuts (left panel) and with ξ
cuts (right panel). The dash-dotted black line represents effective gap survival factor
for both single-dissociation components added together.

Without the ξ cut we observe quite different shapes of distributions in Yl l without and
with soft rapidity gap survival factor (see the left panel). When the ξ-cut is imposed the
distributions with and without soft rapidity gap survival factor have very similar shapes. Then,
however, the elastic-inelastic and inelastic-elastic contributions are well separated in Yl l .

In Fig.5 we show the (mini)jet distribution in rapidity for elastic-inelastic and inelastic-
elastic components. We show the distribution without imposing the ξ cut (left panel) and
when imposing the ξ cut (right panel). One can observe slightly different shape for both
cases. The corresponding gap survival factor (probability of no jet in the main detector) is 0.8
and 0.5, respectively.

4 Conclusion

Here we have reported our recent studies of l+l− production in proton-proton scattering with
one forward proton, by imposing a cut on the so-called proton ξ variable. In this calculation
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Figure 5: Distribution in the (mini)jet rapidity for the inclusive case with no ξ cut
(left panel) and when the cut on ξ is imposed (right panel) for elastic-inelastic and
inelastic-elastic contributions as obtained from the SuperChic generator. We show
result without (dashed line) and with (solid line) soft rescattering correction.

we have included double-elastic and single dissociative contributions. In the latter case we
have considered both continuum production as well as ∆+ isobar production or production of
other nucleon resonances, not discussed here explicitly (see [3]).

Several distributions were discussed in [3]. Here we have shown only some selected re-
sults. Particularly interesting is the distribution in Yl l which has a minimum at Yl l ∼ 0. The
minimum at Yl l = 0 is caused by the experimental condition on ξ±l l imposed on the leading
proton.

We have also made calculations with the popular SuperChic generator and compared cor-
responding results to the results of our code(s). In general, the results are very similar to
those obtained with our codes. We have shown also some results for kinematics-dependent
gap survival factor. We have found some interesting dependence of gap survival factor on Yl l .
Finally we have shown rapidity distribution of a (mini)jet associated with partonic processes,
also when including soft rescattering corrections.
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