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Abstract

We investigate the momentum transfer dependence of differential cross sections dσ/d t
in diffractive electroproduction of heavy quarkonia on proton targets. Model predictions
for dσ/d t within the light-front QCD dipole formalism are based on a realistic model for
a proper correlation between the impact parameter ~b of a collision and color dipole
orientation ~r. We demonstrate a significance of ~b − ~r correlation by comparing with a
standard simplification ~b ‖ ~r, frequently used in the literature.
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1 Introduction

Photo- and electroproduction of heavy quarkonia represents a unique tool allowing to study
diffraction mechanism, saturation phenomena, gluon distribution functions, etc. However, for
a proper analysis of a given effect associated with the corresponding electroproduction process,
it is essential to know various theoretical uncertainties, such as the Q−Q̄ interaction potential,
which generates quarkonium wave functions [1,2], the QQ̄→ V vertex structure in connection
with an open question about a contribution of the D-wave component in quarkonium wave
functions [3], or the shape of dipole cross section σQQ̄, which represents one of the main
ingredients within the color dipole formalism [1,2,4,5].

Theoretical and experimental investigations of the transverse momentum transfer ~q de-
pendence of differential cross sections dσ/dq2 provide the opportunity for a more detailed
study of the QCD dynamics accompanying the diffractive quarkonium production. Knowledge
of ~q-orientation leads to an identification of the reaction plane since ~q is related to the impact
parameter ~b of a collision via Fourier transform. Performing model predictions, this generates
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a task to include a correlation between dipole orientation ~r and the vector ~b properly. Such
~b− ~r correlation is not implemented adequately in most models for b-dependent dipole cross
sections. In the present paper we rely on the model from [6] and analyze how the accurate
~b − ~r correlation modify the results of dσ/dq2 by comparing with predictions based on a
simplified assumption ~b ‖ ~r.

The next Sec. 2 contains a short introduction to the color dipole formalism. The explicit
form of the partial QQ̄-proton amplitude with a proper ~b − ~r correlation is presented in Sec.
3. The impact of such ~b − ~r correlation on magnitudes and shape of dσ/dq2 is analyzed in
Sec. 4. Our main results are summarized in Sec. 5.

2 Color Dipole Framework

Within the light-front (LF) color dipole formalism, the amplitude for electroproduction of
heavy vector mesons with the transverse momentum transfer ~q can be expressed in the factor-
ized form,

Aγ∗p→V p(x ,Q2, ~q) =



V |Ã|γ∗
�

=

∫

d2r

∫ 1

0

dαΨ∗V (~r,α)AQQ̄(~r, x ,α, ~q)Ψγ∗(~r,α,Q2) , (1)

where AQQ̄(~r, x ,α, ~q) is the amplitude for elastic scattering of the color dipole on the nucleon
target, ΨV (r,α) is the LF wave function for heavy quarkonium and Ψγ∗(r,α,Q2) is the LF distri-
bution of the QQ̄ Fock component of the real (Q2 = 0) or virtual (Q2 > 0) photon, where Q2 is
the photon virtuality and the QQ̄ fluctuation (dipole) has the transverse size ~r. The variable α
is the fractional LF momentum carried by a heavy quark or antiquark from a QQ̄ Fock compo-
nent of the photon and x = (m2

V +Q2− t)/(W 2+Q2−m2
N )≈ (m

2
V +Q2− t)/s, where mV and

mN is the quarkonium and nucleon mass, respectively, W is c.m. energy of the photon-nucleon
system and t = −q2.

Most of phenomenological studies of the partial dipole amplitude AQQ̄ are performed in
the impact parameter representation, where b-dependent amplitude AQQ̄(~r, x ,α,~b) is related
to AQQ̄(~r, x ,α, ~q) in Eq. (1) via Fourier transform,

AQQ̄(~r, x ,α, ~q) =

∫

d2 b e−i~b·~qAQQ̄(~r, x ,α,~b) (2)

with the correct reproduction of the dipole cross section at ~q = 0

σQQ̄(r, x) = ImAQQ̄(~r, x ,α, ~q = 0) = 2

∫

d2 b ImAN
QQ̄
(~r, x ,α,~b) , (3)

where the partial dipole amplitude AN
QQ̄
(~r, x ,α,~b) represents the interaction of the QQ̄ dipole

acquiring orientation ~r with a nucleon target at the impact parameter ~b.
The exclusive electroproduction differential cross section on a proton target reads,

dσγ
∗p→V p(s,Q2, t = −q2)

d t
=

1
16π

�

�

�Aγ∗p→V p(s,Q2, ~q)
�

�

�

2
, (4)

where we adopt wave functions of quarkonia generated by the realistic Buchmuller-Tye (BT)
Q − Q̄ interaction potential and a simple "S-wave-only" V → QQ̄ transition requiring to per-
form the Melosh spin rotation [1,2,6]. The corresponding final formulas for differential cross
sections can be found in [6].
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3 Partial Dipole Amplitude

Let’s be ~r the transverse separation of a colorless heavy quark QQ̄ photon fluctuation (dipole)
and the vector ~b is the impact parameter of its centre of gravity. Then the corresponding
interaction of the QQ̄ dipole is possible due to the difference between impact parameters of
Q and Q̄ relative to the scattering centre. Thus, independently of the magnitude of ~r, the
production of any QQ̄ component with the same impact parameter from the target related to
Q and Q̄ is terminated (see Fig. 1). This leads to vanishing and maximal dipole interaction if
~b⊥~r and ~b ‖ ~r, respectively.

Figure 1: A cartoon demonstrating a significance of dipole orientation. Whereas the
left panel illustrates the standard approximation ~r‖~b (an angle between vectors ~r and
~b is fixed at θ = 0o), the right panel represents the general case with no restrictions
for an angle θ requiring so a subsequent integration over θ in calculations.

Such a correlation between the vectors ~b and ~r is incorporated in the partial elastic dipole
amplitude AN

QQ̄
(~r, x ,α,~b) introduced in [7] within the standard model for the dipole cross

section of a conventional saturated form, σQQ̄(r, x) = σ0

�

1− exp
�

−r2/R2
0(x)

��

. The corre-
sponding partial dipole apmlitude reads [6–8],

ImAN
QQ̄
(~r, x ,α,~b ) =

σ0

8πB(x)

�

exp



−

�

~b+ ~r(1−α)
�2

2B(x)



+ exp

�

−
(~b− ~rα)2

2B(x)

�

−2 exp

�

−
r2

R2
0(x)

−

�

~b+ (1/2−α)~r
�2

2B(x)

��

, (5)

where B(x) = R2
N + R2

0(x)/8 with R2
N related to the constant term in the standard Regge

parametrization for the energy-dependent t-slope of the differential elastic cross section. In
our calculations we adopt the GBW dipole model [9, 10], where the above parameters read:
σ0 = 23.03 mb, R0(x) = 0.4 fm× (x/x0)0.144 with x0 = 3.04× 10−4. The form of the dipole
amplitude (5) correctly reproduces at ~q = 0 the dipole cross section according to Eq. (3).

4 Results and discussions

To quantify a significance of the correlation between vectors ~b and ~r, we compare our calcu-
lations with those based on the simplified assumption ~b ‖ ~r. This is shown in Fig. 2, which
demonstrates an importance of the dipole orientation in the partial amplitude AN

QQ̄
, Eq. (5),
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(solid lines) with respect to the ~b ‖ ~r case (dashed lines) at c.m. energies W = 50 (left panel)
and 200 GeV (right panel). In order to study a net effect of ~b − ~r correlation itself, we omit
in calculations the corrections for the real part of the production amplitude and the skewness
effect.
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Figure 2: Manifestation of an importance of a proper ~b − ~r correlation in the par-
tial elastic dipole amplitude by performing calculations of differential cross sections
dσγp→J/ψ(ψ′)p(t)/d t (top panels) and ψ′(2S)-to-J/ψ(1S) ratio of differential cross
sections (bottom panels) at c.m. energies W = 50 (left panels) and 200 GeV (right
panels).

One can see from top panels of Fig. 2 that our model predictions for dσ/d t including a
realistic ~b − ~r correlation in the partial dipole amplitude (5) differ significantly from results
based on a simplified assumption when ~b ‖ ~r (see differences between solid and dashed lines).
The corresponding t-slopes of dσ/d t are rather different, what has an indispensable impact
on all predictions where authors assume that the dipole amplitude is independent of the angle
between vectors ~b and ~r. The significance of dipole orientation rises towards smaller photon
energies corresponding to the energy range of experiments at the LHC and future electron-ion
colliders. This gives a possibility to eliminate various models for b-dependent dipole amplitude
from the description of diffractive quarkonium electroproduction.

The node effect in production of the ψ′(2S) state can be investigated through the t-
dependentψ′(2S)-to-J/ψ(1S) ratio Rψ′/J/ψ(t)≡ R(t) of differential cross sections as is demon-
strated in bottom panels of Fig. 2. One can see that it causes a rather steep rise of R(t), which
is gradually changed for a more flat t-behavior at higher photon energy due to a weaker node
effect. Let’s suppose that ~b − ~r correlation in the dipole amplitude is not included properly.
In that case, we predict a much stronger rise with t of the ratio R(t) especially at the smaller
photon energy (see differences between dashed and solid lines in bottom panels of Fig. 2).
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This represents another way of ruling out various b-dependent models describing the partial
dipole amplitude.

5 Conclusions

We studied the impact of a proper ~b− ~r correlation in the partial dipole amplitude on magni-
tudes of differential cross sections dσ/d t for diffractive electroproduction of heavy quarkonia
on proton targets.

We demonstrated that, in comparison with a correct ~b−~r correlation, usual approximation
~b ‖ ~r leads to a larger t-slope of dσ/d t and causes much steeper rise with t of ψ′(2S)-to-
J/ψ(1S) ratio of differential cross sections.

The significance of dipole orientation becomes stronger towards smaller photon energies
and can be tested by experiments at the LHC and future electron-ion colliders.
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