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Abstract

The Parton Branching (PB) approach describes the evolution of transverse momentum
dependent (TMD) parton densities. We propose to extend the PB method by including
TMD splitting functions, instead of the DGLAP splitting functions which assume strong
ordering in transverse momentum. We present the evolution equations and their nu-
merical solution, which is the first Monte Carlo implementation including TMD splitting
functions.

Copyright L. Keersmaeker.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 13-08-2021
Accepted 04-04-2022
Published 13-07-2022

Check for
updates

doi:10.21468/SciPostPhysProc.8.127

1 Introduction

TMD factorization theorems (see [1] and references therein) are important for precise theo-
retical predictions of physical observables such as the Drell-Yan (DY) transverse momentum
spectrum in hadronic collisions. The Parton Branching (PB) method [2–4] allows one to ob-
tain the evolution of TMD Parton Distribution Functions (TMD PDFs) in terms of Sudakov
form factors, real-emission splitting functions and angular-ordering phase space constraints.
The method has recently been applied to DY [5–7] and photon-induced [8] lepton-pair pro-
duction, and to DY + jets production [9]. It has been implemented in the Monte Carlo (MC)
event generator CASCADE [10,11].

Currently, the PB method uses Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [12–
14] splitting functions, which assume that the partons along the branching decay chain are
strongly ordered in transverse momenta. From high-energy factorization [15–17], it is known
that potentially large corrections to strongly-ordered branchings arise for small longitudinal-
momentum fractions x [18,19]. These corrections can be taken into account by generalizing
the concept of DGLAP splitting functions to that of TMD splitting functions [20,21]. A calcu-
lational programme of TMD splitting functions is pursued in [22–26].
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We propose in this work an implementation of TMD splitting functions within the PB
method. It is the first MC implementation that uses TMD splitting functions and a first step
towards a new MC that includes small-x physics.

2 Evolution equations

In this work, three different scenarios for PB evolution equations are studied [27]. The equa-
tions for momentum-weighted TMD PDFs Ãa(x , k,µ2) = xÃa(x , k,µ2) for a parton of flavour
a, evaluated at a scale µ, with x the longitudinal momentum fraction of the proton and k the
transverse momentum, are given by

Ãa(x , k,µ2) =∆a(µ
2)Ãa(x , k,µ2

0) +
∑

b

∫

d2µ′

πµ′2
∆a(µ2)
∆a(µ′2)

Θ(µ2 −µ′2)Θ(µ′2 −µ2
0)×

×
∫ zM

x
dzPabÃb(

x
z

, k + (1− z)µ′,µ′2), (1)

where ∆a is the Sudakov form factor for parton a, Pab is the real-emission function for parton
splitting b→ a, and the phase-space angular ordering is embodied in i) the running coupling,
ii) the relationship between the evolution variable and the transverse momentum, and iii) the
soft gluon resolution scale zM . The latter separates resolvable from non-resolvable branchings,
and is taken to be dynamical, i.e., dependent on the evolution scale µ′: zM = 1−q0/µ

′, where
the parameter q0 represents the minimal transverse momentum of the emitted parton. The
main features of this approach are described in [6]. The three scenarios are characterized as
follows:

1. Pab = P col
ab (z,µ′2) and ∆a(µ2) =∆col

a (µ
2);

2. Pab = PT M D
ab (z, k ′,µ′), with k ′ = k + (1− z)µ′, and ∆a(µ2) =∆col

a (µ
2);

3. Pab = PT M D
ab (z, k ′,µ′) and ∆a(µ2) =∆T M D

a (µ2, k2).

The resolvable branching probabilities of the first condition P col
ab (z,µ′2) are the real emis-

sion parts of the DGLAP splitting functions. The TMD splitting functions in their original vari-
ables P̃R

ab(z, k ′, k̃), which can be found in [25], are defined within the 2-gluon irreducible ker-
nels, which integrate over the boost-invariant transverse momentum
k̃ = k − zk ′. For the second and third condition we use the TMD splitting functions

PT M D
ab (z, k ′,µ′) = d2 k̃

k̃2

µ′2

d2µ′ P̃
R
ab(z, k ′, k̃), were we have chosen to absorb a Jacobian in their

redefinition. The collinear Sudakov form factor, which resums non-resolvable branchings and
virtual corrections, is given by

∆col
a (µ

2) = exp[−
∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

0 dz z P col
ba (z,µ′2)]. In the standard PB method, which corre-

sponds to the first condition, it has the interpretation of the probability of an evolution without
any resolvable branching. Since we change the resolvable branching probabilities in the sec-
ond condition, this interpretation is no longer valid. In the third condition the TMD Sudakov

form factor ∆T M D
a (µ2, k2) = exp[−

∑

b

∫ µ2

µ2
0

dµ′2

µ′2

∫ 2π
0

dφ
2π

∫ zM

0 dz z PT M D
ba

�

z, k,µ′
�

], where φ is

the angle between k and µ′, is defined such that this interpretation is again valid. This condi-
tion has effects of TMD splitting functions in both resolvable and non-resolvable branchings.
At k = 0, the TMD Sudakov form factor is equal to the collinear Sudakov form factor. When
k increases, the TMD Sudakov form factors decrease for both gluons and quarks.
A property of the equations with the first and third condition is that the momentum of the
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Table 1: Check of momentum conservation:
∫ 1

10−5 d x f̃a(x ,µ2).

µ2 (GeV) P col
ab , ∆col

a PT M D
ab , ∆col

a PT M D
ab , ∆T M D

a
(condition 1) (condition 2) (condition 3)

10 0.999 1.007 0.999
100 0.997 1.045 0.997
1000 0.995 1.091 0.994
10000 0.992 1.129 0.991
100000 0.984 1.148 0.983

proton is conserved. The second condition doesn’t conserve the proton’s momentum. This can
be shown analytically, and is shown numerically in table 1.
The evolution equations are here shown for TMD PDFs, but to obtain collinear PDFs, one can
simply integrate over the transverse momentum k: f̃a(x ,µ2) =

∫ d2k
π Ãa(x , k,µ2).

The equations can be solved with MC techniques.

3 Numerical results

In this section, we show results for the evolution equations 1 obtained with the same ini-
tial parametrization for all scenarios Ãa(x , k⊥,0,µ2

0) = x fa(x ,µ2
0) ·

1
q2

s
exp

�

−k2
⊥,0/q

2
s

�

at scale

µ2
0 = 1.9 GeV2. The x-dependence is generated according to a collinear PDF x fa(x ,µ2

0) which
is chosen to HERAPDF20_LO_EIG and the k⊥-dependence is generated according to a Gaus-
sian, with qs = 0.5 GeV. By using fixed starting distributions, we can study the impact of each
element in the evolution equations. However, before the TMD PDFs can be applied to phe-
nomenology, they should be fitted, which is left for future work. In figure 1, we show the gluon
distribution at scale µ = 100 GeV obtained with condition 1 (col P), condition 2 (TMD P col
Sud) and condition 3 (TMD P TMD Sud). The bottom plots show the ratio between the differ-
ent curves, compared to condition 1. With these ratio plots one can easily see the differences
between the evolved TMDs in the whole x or k⊥ region. Left, the integrated TMD PDF versus x
is shown. The TMD splitting functions affect the distributions already at the level of integrated
TMDs. The TMD splitting functions reduce to the DGLAP splitting functions for k ′ → 0 and
therefore the effects of them are small in the large-x region. A suppression in the PDF can be
seen for the model with TMD Sudakov form factor compared to the PDF from the model that
uses TMD splitting functions and a collinear Sudakov form factor. Right, the TMD PDF versus
k⊥ at x = 0.001 is shown. The whole k⊥-region is affected by the TMD splitting functions.
The suppression from the TMD Sudakov form factor is visible in the whole k⊥-region. There
are kinks visible in the k⊥-spectrum due to the non-perturbative input.
In figure 2 we show the influence of non-perturbative input. We do this for the first condition,
but condition 3 gives similar results. The transverse momentum of a parton after n branchings
is given by k = k0 −

∑n
i=1 qi , with qi = (1 − z)µi the transverse momentum of the emitted

parton. Since we use the dynamical resolution scale, we have q⊥,i > q0 and the transverse
momentum from the evolution begins to build up around the value of q0. But since we have
a vector sum, k⊥ below q0 can be reached and the peak can be smeared by many branchings.
In the left figure we show the gluon TMD PDF vs k⊥ for different values of q0. We see that
when we lower q0, the curve gets smoother, this has two reasons: with low q0 there are more
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Figure 1: Collinear (left) and TMD (right) PDFs for gluons. The bottom plots show
the ratio between the curves.
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Figure 2: Gluon TMD PDFs for different values of the non-perturbative input q0 and
qs. The bottom plots show the ratio between the curves.

resolvable branchings and therefore the peak from evolution is more smeared out and with
low q0 the overlap is larger with the peak from intrinsic k⊥ around 0. In the right figure we
show the effects of the width of the Gaussian function for intrinsic k⊥, by varying qs, while
q0 is fixed at 1 Gev. When qs is close to q0, the curve is smoother than when qs is smaller,
again because of the overlap between the two peaks. We can see that qs only affects the small
k⊥-region.

4 Conclusion

We have presented a Monte Carlo implementation of TMD splitting functions in the Parton
Branching approach. The TMD splitting functions affect both resolvable branchings and Su-
dakov form factors. The evolution with TMD splitting functions has impact on both collinear
and TMD parton distributions. The effects are visible in the small-x region of PDFs and
throughout the whole k⊥-spectrum of TMD PDFs. Phenomenological studies are warranted at
the LHC as well as at future hadron-hadron [28,29] and lepton-hadron [30,31] colliders.
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