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Abstract

We describe the calculation of the QCD contribution to same-sign W -pair production,
pp → e±νeµ

±νµ j j, resumming all contributions scaling as α4
Wα

2+k
s logk(ŝ/p2

⊥) [1]. These
leading logarithmic contributions are enhanced by typical cuts used for Vector Boson
Scattering (VBS) studies. We show that while the cross sections are little affected by
these corrections, other more exclusive observables relevant for experimental studies
are affected more significantly.
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1 Introduction

Vector boson scattering (VBS) represents a key test of the standard model and has been the
topic of many experimental and theoretical studies (see e.g. [2] for a recent review). In ad-
dition to the electroweak (EW) contribution of interest for such studies, other topologies may
contribute to the same final state pp→ V V +2 j. This includes in particular the QCD contribu-
tion which starts at O(α2

Wα
2
s ). To try to increase the relative importance of the EW contribution

compared to the QCD one, analyses typically implement so-called VBS cuts which require a
large rapidity separation and/or invariant mass between the leading jets in the event [3–5].
It turns out that this is precisely the region where logarithmic corrections in log(ŝ/p2

t ) become
important and need to be resummed to all orders since in these kinematics the combination
αs log(ŝ/p2

t ) is not necessarily small. Therefore, while the VBS cuts are effective at increasing
the EW fraction, they also make it more difficult to accurately evaluate the remaining QCD
contribution. Here we will discuss how these high energy contributions can be resummed to
leading logarithmic (LL) accuracy in the HEJ framework.
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Figure 1: Schematic illustration of the current jWµ (pi , po, p`, p¯̀) defined in Eq. (2)
which describes the production of a W boson from a quark line with an off-shell
gluon (shown as a zigzag line).

2 Construction of the Amplitudes

In this work we focus on same-sign W -pair production, pp → W±W±+ ≥ 2 j, where one W
boson decays in the electron channel and the other one in the muon channel. We start with
the leading order (LO) process:

q(pa)Q(pb)→ (W±
1 →)`(p`1

)¯̀(p¯̀
1
)(W±

2 →)`
′(p`2

)¯̀′(p¯̀
2
)q′(p1)Q

′(p2), (1)

with q and Q representing different quark or anti-quark flavours. There are 8 Feynman dia-
grams contributing at this order, corresponding to the possible ways to assign the W s to the
different quark lines. To describe the emission of a W boson from a quark line, we define the
following current:

jWµ (pi , po, p`, p¯̀) =
g2

W

2
1

(p` + p¯̀)2 −m2
W + iΓW mW

�

ū−(p`)γαv−(p¯̀)
�

×
�

ū−(po)γα(/po + /p` + /p¯̀)γµu−(pi)

(po + p` + p¯̀)2
+

ū−(po)γµ(/pi − /p` − /p¯̀)γαu−(pi)

(pi − p` − p¯̀)2

�

,

(2)

as schematically represented in Fig. 1. This current is in fact the same as the one appearing
in single W plus jets production [6, 7]. The exact LO amplitude for the process (1) is imple-
mented in the HEJ event generator as a contraction of two such currents. In order to achieve
leading-logarithmic accuracy, this must be supplemented with higher order corrections start-
ing at O(α3

s ). Using the methods of the HEJ framework [8], this takes the form of Lipatov
vertices describing real gluon emissions between the two extremal partons and exponential
factors for t-channel propagators, arising from the virtual corrections and the integration of
unresolved real emissions. We refer to [1] for more details. These corrections capture the
leading logarithmic behaviour at high energy. Let us stress that while some approximations
are made within the matrix element beyond leading order, the phase space is integrated over
in an exact way using Monte Carlo techniques, which gives full flexibility to implement the
same cuts as experimental analyses.

While the amplitude as described above already has the correct LL behaviour, its accuracy
can be further improved by supplementing it with subleading terms providing LO accuracy
at each order in αs up to the point where this is computationally feasible. This fixed order
matching is implemented using the methods of HEJ2 [9,10] which is available at https://hej.
hepforge.org. In practice we have used Sherpa [11] to generate the fixed-order input for this
study, including LO contributions up to 6 jets.

In addition, we also rescale the HEJ2 predictions to match the inclusive cross section ob-
tained at NLO. However, as explained in the following section, the inclusive cross sections are
very close in this particular setup and the matching therefore has a negligible impact.
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Table 1: Cross section obtained at LO+LL accuracy using HEJ2 compared with the
result at NLO accuracy, both before and after the additional VBS cuts given in the
text.

Cross Section (fb) without VBS cuts, σincl with VBS cuts, σVBS σVBS/σincl

HEJ2 W+W+ 1.428± 0.002 0.1219± 0.0004 0.0854± 0.0003
NLO W+W+ 1.41± 0.05 0.12± 0.07 0.08± 0.02
HEJ2 W−W− 0.6586± 0.0003 0.0402± 0.0001 0.0610± 0.0002
NLO W−W− 0.68± 0.02 0.04± 0.01 0.06± 0.02

3 Impact of the LL Corrections

We now turn to the HEJ2 predictions adapted to the 13 TeV LHC kinematics. The cuts on
the jets and leptons are the same as in a recent CMS analysis of this process [4]. In addition
to the inclusive cuts, CMS also considered additional so-called VBS cuts to try to increase the
EW/QCD ratio: m j1 j2 > 500 GeV, |∆η j1 j2 |> 2.5 and max(zl)< 0.75, where zl is the Zeppenfeld
variable [12]:

zl =
ηl −

1
2(η j1 +η j2)

|η j1 −η j2 |
. (3)

In Table 1 we show the comparison of the cross sections obtained with HEJ2 and at NLO
using Sherpa [11] with the extension of OpenLoops [13]. We observe a very close agreement
between the two calculations, both before and after the VBS cuts. However, this agreement
does not hold for less inclusive observables as can be seen for example in Fig. 2 where we show
the exclusive jet rates obtained both before and after the additional VBS cuts. In the inclusive
case one can observe a steady decrease at each multiplicity. On the other hand, after imposing
the VBS cuts, the relative importance of the higher multiplicities is significantly enhanced,
with the 2-jet and 3-jet rates being very similar in the HEJ2 predictions, while the 3-jet rate is
even larger than the 2-jet one in the NLO calculation. These results show the importance of
the higher-order corrections resummed by HEJ2.

From now on we focus on the results with the additional VBS cuts. In Figs. 3 and 4 we
show the comparison of the HEJ2 and NLO calculations as a function of the pseudorapidity
separation and invariant mass of the leading jets, the transverse momentum of the leading jet
and the Zeppenfeld variable. One can see that the good agreement of the HEJ and NLO cross
sections does not apply to some distributions such as the transverse momentum of the leading
jet and the invariant mass of the leading jets. In these cases the logarithmic corrections give
predictions which are substantially larger than those predicted at NLO. On the other hand, the
pseudorapidity separation of the leading jets and the Zeppenfeld variable show a close agree-
ment between the two calculations, which indicates that these observables are less sensitive
to the logarithmic corrections studied here.

4 Conclusions

We have presented a calculation of the process pp→ e±νeµ
±νµ+≥ 2 j atO(α4

Wα
k+2
s logk(ŝ/p2

t )),
focusing on typical cuts used in VBS analyses. These cuts select regions of the phase space
where the high energy logarithms become important, and the HEJ2 exclusive event genera-
tor provides a convenient framework to resum these contributions to all orders. While the
inclusive cross sections obtained in this approach are very similar compared to those at NLO,
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pp→ (W → eνe)(W → µνµ) + jets
LHC@13 TeV
anti-kt, R = 0.4, pj;⊥ > 50 GeV, |ηj| < 4.7
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Figure 2: Exclusive jet rates for pp → W±W±+ ≥ 2 j, without (a) and with (b) the
additional VBS cuts.
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Figure 3: Differential distributions in the pseudorapidity separation (a) and invariant
mass (b) of the two leading jets.

significant differences can be observed in several distributions relevant for experimental stud-
ies, such as the exclusive jet rates, the invariant mass of the leading jets and the transverse
momentum of the hardest jet. These results show that the logarithmic corrections proportional
to αk

s logk(ŝ/p2
t ) can be sizeable at the 13 TeV LHC and should be taken into account in order

to accurately model the QCD contribution to vector boson scattering.
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Figure 4: Differential distributions in the transverse momentum of the leading jet (a)
and in the Zeppenfeld variable for the electron (b).
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