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Abstract

We discuss two collider processes which combine a diffractively produced ρ meson sepa-
rated by a large rapidity gap from a hard exclusive scattering of a Pomeron on a nucleon,
giving rise to a lepton pair or to a second meson. These two processes probe the nucleon
quark content described by generalized parton distributions in a very specific way.
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1 Introduction

Diffractive events at high energy usually probe the low xBj region, and consequently mostly the
gluon content of the nucleon. A specific kinematical domain accessible at high energy electron-
ion colliders allows, however, to access the valence quark region, opening a new experimental
window on the nucleon tomography program. This domain is characterized by a large rapid-
ity gap between a diffractively produced vector meson and a “nucleon dissociation” process
reminiscent of deeply exclusive Compton scattering or deeply virtual meson production.

In Refs. [1,2], we analyzed diffractive reactions which allow access to certain combinations
of generalized parton distributions (GPDs) that cannot be accessed in DVCS-like reactions, as
for instance charge conjugation odd GPDs or chiral-odd quark GPDs. In these proceedings, we
highlight results from these studies.

2 A hybrid factorized framework

At large energy, the QCD amplitude may be written in the Regge-inspired kT -factorization
approach as the convolution of two impact factors Φ1 and Φ2 and the Pomeron (P) propagator,

159.1

https://scipost.org
https://scipost.org/SciPostPhysProc.8.159
mailto:wcosyn@fiu.edu
https://doi.org/10.21468/SciPostPhysProc.8
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.8.159&amp;domain=pdf&amp;date_stamp=2022-07-14
https://doi.org/10.21468/SciPostPhysProc.8.159


SciPost Phys. Proc. 8, 159 (2022)

Figure 1: Left panel: the diffractive amplitude (here for theρ + lepton pair) is written
in the kT -factorization approach as the convolution of two impact factors (Φ1,Φ2)
and the Pomeron propagator, which at lowest order is a two gluon exchange. Right
panel : the impact factor Φ2 is then calculated (here for the ρ + meson case) in
collinear factorization, in terms of GPDs and DAs.

which at lowest order is a reggeized two gluon exchange and is subject to the BFKL evolution
equations, see Fig. 1. In exclusive scattering, QCD collinear factorization enables to calculate
the impact factors in terms of meson distribution amplitudes (DAs) and GPDs.

A characteristic feature of such a description in the leading order approximation is that
the cross sections are s-independent (s being the initial γ(∗)N squared invariant mass) which
makes their rates potentially quite large in the high energy domain. Moreover, contrarily to
the usual deeply virtual Compton scattering (DVCS) case, the skewness variable is not re-
lated to the usual Bjorken variable xBj but to a different (process-dependent) ratio which may
be large even at high energy. Finally, the amplitudes turn out to depend on the so-called
Efremov-Radyushkin-Brodsky-Lepage (ERBL) region of GPDs [3, 4] where GPDs are particu-
larly unrestricted, in particular because the positivity constraints which relates them to usual
quark distributions do not apply.

3 Vector meson + M production

We follow the pioneering work [3], where the exclusive process

e+ N(p1)→ e′ +ρ0
L(qρ) +M2(pM2

) + N ′(p2) (1)

has been studied for the case M2 = ρ+ in the kinematical regime where the two ρ mesons
are separated by a large rapidity gap. The hard scale is the virtuality of the hard Pomeron,
measured by the squared transverse momentum of the ρ0

L-meson ~q2
ρ ≈ (q − qρ)2 [5]. This

hard scale ensures the small-sized configuration in the top part of the diagram (Φ1) and the
separation of short-distance and long-distance (GPD, DA) dynamics in the bottom part of the
right panel of Fig. 1. The amplitudes are particularly sensitive to yet quite unconstrained
features of GPDs. In Ref. [1], we revisited and enlarged the phenomenology of two-meson
electroproduction in this hard diffractive regime, adding the coherent deuteron target case
which has recently attracted much attention, and considering the M2 = π,ω channels. The
skewness parameter ξ is here given by

ξ≈
s1 +Q2

2s− s1 +Q2
≈

s1

2s− s1
, (2)

where s1 = (qρ + pM2
)2 is the large invariant squared mass of the two produced mesons and

s = (q+ pN1
)2 is the center-of-mass energy squared of the γ∗p−system, see Fig. 1. Our results
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Figure 2: ξ dependence of the γ∗ + p → ρ0
L + (ρ

0
T/ωT ) + p cross section for

Q2 = 1 GeV2, ~q2
ρ = 2 GeV2, −t = (−t)min. This process is sensitive to the chiral-

odd nucleon GPDs. We compare different GPD and DA models, see [1] for details.

are illustrated in Fig. 2 by the ξ dependence of the γ∗+p→ ρ0
L+(ρ

0
T/ωT )+p cross section for

Q2 = 1 GeV2, ~q2
ρ = 2 GeV2 and the minimum momentum transfer to the nucleon−t = (−t)min.

This process is sensitive to the more elusive chiral-odd nucleon GPDs and cross sections show
large variations between the different considered DA and GPD inputs.

Fig. 3 illustrates our results for the coherent deuteron reactions, where the ρ0
Lρ and ρ0

Lπ

channels are forbidden by isospin constraints. Here also, σL cross-sections are larger than σT ;
cross sections are smaller for the deuteron case and drop faster with ξ, with the ωL channels
showing a larger drop. The deuteron GPDs [6, 7] are calculated from the nucleon GPDs in a
convolution model.

Our leading order analysis of the diffractive electroproduction of two mesons separated
by a large rapidity gap demonstrated that they are a promising way to access nucleon and
deuteron GPDs at EIC with a particular emphasis on some very bad known features of these
non-perturbative objects. Both the chiral-even and chiral-odd GPDs are entering the amplitude
at the leading twist level, their contributions being well separated in an angular analysis of the
ππ (or πππ) decay products of the ρ (or ω) produced in the subprocess Ph→ VL,T h′ where
h is a proton, neutron or deuteron, and VL,T the polarized vector meson.

4 Vector meson + lepton pair production

This process, introduced in [4] and discussed in [2] is very reminiscent of the timelike Compton
scattering γN → γ∗N ′, with the Pomeron replacing the initial photon. To ensure a perturbative
description of the exchanged Pomeron, one needs here to consider a virtual incoming photon
and the amplitude of the subprocess

γ∗(q) + N(p1)→ ρ(qρ) + γ∗(q′) + N ′(p2) , (3)
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Figure 3: ξ dependence of the γ∗ + D → ρ0
L + ω + D′ coherent cross section for

Q2 = 1 GeV2, q2
ρ = 2 GeV2. This process is sensitive to the chiral-even deuteron

GPDs (ωL production, upper row) and chiral-odd deuteron GPDs (ωT production,
lower row). We compare different GPD and DA models (see [1] for details).

now depends on two large scales Q2 = −q2 and Q′2 = q′2. The skewness parameter is

ξ≈
Q′2

2s2 −Q′2
, (4)

with s2 = (q′ + p2)2. Our studies, illustrated in Fig. 4, show that the cross sections are quite
small at leading order, which can make a straightforward analysis of the process at the lumi-
nosities of planned electron-ion collider facilities quite difficult. In terms of non-perturbative
inputs, the calculations show much greater sensitivity to the nucleon GPD input than to the
ρ meson DA one [2]. This GPD model sensitivity is due to the quite unique fact that the am-
plitude only depends on their behaviour in the ERBL region, which is quite unrestricted by
current data analysis of the DVCS process. The cross section is dominated by the imaginary
part of the Compton form factors [2, 4] and is maximized at small values of the hard scales
Q2,Q′2 where higher order corrections to the formalism would be needed.

5 Conclusion

Data from a future high luminosity electron-ion collider will yield new opportunities to test
QCD techniques and to perform a complete tomography of nucleons. The reactions presented
here are just two of the possible processes that should be carefully analyzed and checked for
their feasibility. The results present first steps for two reactions that allow to probe GPDs in
regions or combinations where they are currently quite unconstrained. Much theoretical work
remains to be done for these processes, in particular including higher order QCD corrections
and higher twist contributions.
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Figure 4: Diffractive ρ + dilepton photoproduction cross sections for different values
of Q2 at tN = −0.1 GeV2 and tρ = tmin

ρ , as a function of Q′2 and for various values
of s2 (color), with three different GPD models (line style), see [2] for details.
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