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Abstract

In this paper we will describe a parallel between phenomenological and symmetry-based
descriptions of the process dependence of the time-reversal-odd phenomena in QCD,
such as the Sivers effect, with the goal of defining the essential elements that lead to
such process dependence in QCD. This will then serve as a starting point to explore
possible generalizations in a different gauge theory.
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1 Introduction

In this paper, we will first explore the general features of time-reversal-odd (T-odd) Trans-
verse Momentum Dependent (TMD) Parton Distribution Functions (PDFs) and the associated
process dependence in Quantum Chromodynamics (QCD). We will then elaborate on the pos-
sibility of accessing analogous effects in a different gauge theory, i.e., in Quantum Electrody-
namics (QED). In order to understand the common physical and mathematical baseline for
these effects, it is useful to briefly summarize the history of the problem.

In 1990, Sivers introduced a new quark distribution function sensitive to the transverse
momentum of the parton and the transverse spin of the target, based on phenomenological
arguments [1, 2]. In 1993, Collins argued [3] that this type of function must be zero based
on the combination of the parity (P) and the time-reversal (T) symmetries of QCD. In 2002,
Brodsky, Hwang and Schmidt found [4] a non-zero interference configuration potentially cor-
responding to a non-zero T-odd partonic distribution. In this context, a correlation between
the transverse spin of the hadron and the partonic transverse momentum explicitly appeared
in the formalism. Later in 2002, Collins amended his previous conclusions [5] by the addition
of Wilson lines in the definition of partonic distributions, and confirmed the potential existence
of T-odd partonic distribution functions purely based on the interplay of the gauge symmetry
and the time reversal symmetry of QCD.
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2 Phenomenological approaches

In 1976 at Argonne National Laboratory, there was a striking discovery of spin-dependent
asymmetries in the momentum direction of charged pions produced via transversely polarized
proton beams [6]. Since then, the study of spin asymmetries has rapidly evolved, both from
the theoretical and the experimental point of view. In particular, the observations of spin
asymmetries could not be successfully described within a simple collinear and leading-twist
parton model. This triggered an investigation of hadron structure beyond this framework, and
different (but complementary) mechanisms were proposed to account for spin asymmetries.

The common feature of these mechanisms is a complex phase generated by an additional
gluon exchange between the active parton and the remnant of the hadron target. Mathemati-
cally, this phase can be described with a dynamical higher-twist effect in collinear factorization
or by the Wilson line in the TMD factorization formalism.

2.1 Sivers’ approach

In attempting to account for the large single spin asymmetries observed experimentally, in
Ref. [7] it was shown that a calculation purely based on collinear factorization in QCD cannot
reproduce the observed effect, since at the partonic level the asymmetry would be largely
suppressed being proportional to αs mq/

p
s, where αs is the coupling constant of QCD, mq the

quark mass, and
p

s the energy in the center of mass.
To attempt a qualitatively correct interpretation of these phenomena, Sivers introduced a

non-perturbative partonic distribution sensitive to the transverse momentum of the quark as
a generalization of collinear distributions [1,2]:

Ga/h(x;µ) −→ Ga/h(x , kT ;µ) , (1)

∆Ga/h↑(x , kT ;µ) = Ga/h↑(x , kT ;µ)− Ga/h↓(x , kT ;µ) , (2)

where a, h are the parton and hadron flavors, x and kT are the collinear momentum fraction
and the transverse momentum of the quark, µ is the renormalization scale, and the arrow
indicates the direction of the hadronic transverse spin. Estimates of the cross sections based
on this function yield the correct order of magnitude for the observed asymmetries [1, 2].
However, today we know that a description of the asymmetry for the specific process pp↑→ hX
in modern TMD factorization [8] is formally incorrect, and a collinear twist-3 formalism is
more appropriate [9,10].

2.2 Brodsky, Hwang, Schmidt’s approach

In 2002, Brodsky, Hwang, and Schmidt justify non-zero single spin asymmetries in QCD as
produced by the interference between two amplitudes: one in which the outgoing quark and
the hadronic remnant exchange a gluon and one in which they do not [4]. Fig. 1 represents
semi-inclusive deep inelastic scattering (SIDIS) without and with the aforementioned gluon
exchange, whose interference generates a non-zero single spin asymmetry. In this context, the
interference between these amplitudes is proportional to a spin-momentum correlation of the
form:

i~Sp · ~q× ~pq , (3)

with ~Sp the proton spin, ~pq the quark momentum, and q the photon momentum.
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Figure 1: SIDIS without and with gluon exchange. Original figure from Ref. [4].

3 Symmetry-based approach

The main criticism towards Sivers’ arguments in favor of a non-zero partonic distribution func-
tion such as the one in Eq. (2) came from Collins, who argued that such a time-reversal odd
function should be zero based on the time reversal symmetry of QCD [3]. These arguments
were amended by Collins himself in 2002 [5] by using the correct gauge invariant definition
for the quark correlation function. In the following we briefly outline the symmetry-based
argument.

Let us define the quark correlation function for a spin 1/2 hadron, including the Wilson
line U that guarantees the gauge invariance:

Φ
[U]
i j (k, P, S) =

∫

d4ξ

(2π)4
ei k·ξ〈P, S|ψ j(−ξ/2)U(−ξ/2,ξ/2)ψi(ξ/2)|P, S〉 , (4)

whereψ is the quark field, ξ is the non-locality in spacetime, k is the quark four momentum, P
the hadronic four momentum, S the covariant spin vector for the hadron, and the superscript
[U] represents the dependence on the path of the Wilson line. The path of the Wilson line
is specified by the hard process in which the struck quark enters. For SIDIS the Wilson line
is characterized by the future-pointing staple-like path described in Fig. 2 (a), whereas for
Drell-Yan the path is a past-pointing staple (see Fig. 2 (b)). The time reversal symmetry of

ξT

ξ−

ξT

ξ−

(a) (b)

Figure 2: Representations of staple-like Wilson lines running from 0 to ξ in the hy-
perplane defined by the minus component and the transverse components of ξ: the
future-pointing Wilson line U+ (a) and the past-pointing Wilson line U− (b).

QCD implies that the unintegrated correlation function in Eq. (4) transforms in the following
way:

Φ[±]∗(k; P, S) = iγ1γ3Φ[∓](k̃; P̃, S̃)iγ1γ3 , (5)

where the superscripts [±] refer to the staple-like Wilson line in Fig. 2 and the tilde four vec-
tors have opposite spatial components with respect to the non-tilde ones (e.g. k̃µ = (k0,−~k)).
Thus, the interplay between the time reversal symmetry and the Wilson line generates rela-
tions between the Φ[+] and the Φ[−] correlators, which allow one to define T-odd and T-even
combinations of Φ[±].
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Let us now introduce the transverse-momentum-dependent correlator for an unpolarized
quark in a nucleon:

Φ[U](x ,~kT) =
1
2

f [U]1 (x , k2
T
)/n+ +

1
2M

f [U]⊥1T (x , k2
T
)εαβ

T
STαkTβ /n+ , (6)

where f [U]1 and f ⊥[U]1T are, respectively, the path-dependent unpolarized and Sivers TMD PDFs.
The time-reversal relation in Eq. (5) applied to the TMD correlator (6) implies that:

f [+]1 (x , k2
T
) = f [−]1 (x , k2

T
) , f ⊥[+]1T (x , k2

T
) = − f ⊥[−]1T (x , k2

T
) . (7)

Eq. (7) means that the unpolarized TMD PDF f1 is even under time-reversal transformation
and universal, whereas the Sivers TMD PDF is odd under time-reversal transformation and is
process dependent. This process dependence amounts to a sign-change between the SIDIS and
Drell-Yan processes. Without the Wilson line operator U in Eq. (4), one would simply obtain
f ⊥1T = − f ⊥1T = 0. This was indeed the original argument by Collins against T-odd distribution
functions [3] which was later corrected by introducing the proper Wilson lines [5,8].

4 QED vs QCD

Both QED and QCD potentially admit “asymmetries” which can be explained in terms of Wilson
lines. For example, relying on a double-slit experiment Aharonov and Bohm [11] showed that
the wave function of an electron moving around a solenoid experiences a phase shift as a result
of the enclosed magnetic field. The amplitude of the interference pattern is proportional to a
phase of the form

exp
§

− ie

∮

ds · A(s)
ª

, (8)

where A(s) is the electromagnetic potential. The direction of the shift for the interference pat-
tern changes sign depending on the direction of the magnetic field, which is similar to what
happens in QCD with hadronic spin and the associated asymmetries. Eq. (8) is a QED Wil-
son loop, formally analogous to the non-abelian Wilson lines that mathematically justify the
presence of T-odd partonic distributions in QCD and the emergence of single spin asymmetries
therein. This analogy paves the way to the investigation of other possible QED observables sen-
sitive to the interplay between the time-reversal and the gauge symmetry. Such experimental
validation would complement and strengthen the existing QCD programs.

5 Outlook

Single spin asymmetries in QCD and the associated T-odd partonic distributions can be inves-
tigated using two complementary approaches, one based on the symmetries of QCD and the
other related to spin-momentum correlations (see e.g. Eq. (3)). The T-odd effects are not
peculiar to QCD but can be formally introduced as well in a different gauge theory with time-
reversal invariance, for example QED. Finding an experimental confirmation of the process
dependence of the T-odd distributions is one of the key-milestones of the QCD programs. We
are planning to develop analogs of these QCD observables working in a different physics frame-
work based on QED, for example atomic physics. This is motivated by the fact that from the
theoretical point of view in QED one does not need to worry about non-perturbative physics
and isolating this from the purely perturbative effects. Moreover, experimental measurements
in atomic physics and QED are much more precise than in QCD.

169.4

https://scipost.org
https://scipost.org/SciPostPhysProc.8.169


SciPost Phys. Proc. 8, 169 (2022)

This work is supported by the U.S. Department of Energy, Office of Science, Office of
Nuclear Physics, contract no. DE-SC0013393. AS acknowledges support from the European
Commission through the Marie Sklodowska-Curie Action SQuHadron (grant agreement ID:
795475). JLab number: JLAB-THY-21-3476.

References

[1] D. W. Sivers, Single Spin Production Asymmetries from the Hard Scattering of Point-Like
Constituents, Phys. Rev. D 41, 83 (1990), doi:10.1103/PhysRevD.41.83.

[2] D. W. Sivers, Hard scattering scaling laws for single spin production asymmetries, Phys.
Rev. D 43, 261 (1991), doi:10.1103/PhysRevD.43.261.

[3] J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momen-
tum distributions, Nucl. Phys. B 396, 161 (1993), doi:10.1016/0550-3213(93)90262-N,
hep-ph/9208213.

[4] S. J. Brodsky, D. S. Hwang and I. Schmidt, Final state interactions and single spin
asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B 530, 99 (2002),
doi:10.1016/S0370-2693(02)01320-5, hep-ph/0201296.

[5] J. C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic
scattering, Phys. Lett. B 536, 43 (2002), doi:10.1016/S0370-2693(02)01819-1, hep-ph/
0204004.

[6] R. D. Klem, J. E. Bowers, H. W. Courant, H. Kagan, M. L. Marshak, E. A. Peterson, K. Rud-
dick, W. H. Dragoset and J. B. Roberts, Measurement of Asymmetries of Inclusive Pion
Production in Proton Proton Interactions at 6-GeV/c and 11.8-GeV/c, Phys. Rev. Lett. 36,
929 (1976), doi:10.1103/PhysRevLett.36.929.

[7] G. L. Kane, J. Pumplin and W. Repko, Transverse Quark Polarization in Large pT Reac-
tions, e+e− Jets, and Leptoproduction: A Test of QCD, Phys. Rev. Lett. 41, 1689 (1978),
doi:10.1103/PhysRevLett.41.1689.

[8] J. Collins, Foundations of perturbative QCD, vol. 32, Cambridge University Press,
ISBN 978-1-107-64525-7, 978-1-107-64525-7, 978-0-521-85533-4, 978-1-139-09782-6
(2013).

[9] A. V. Efremov and O. V. Teryaev, On Spin Effects in Quantum Chromodynamics, Sov. J.
Nucl. Phys. 36, 140 (1982).

[10] J.-W. Qiu and G. F. Sterman, Single transverse spin asymmetries, Phys. Rev. Lett. 67, 2264
(1991), doi:10.1103/PhysRevLett.67.2264.

[11] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum the-
ory, Phys. Rev. 115, 485 (1959), doi:10.1103/PhysRev.115.485.

169.5

https://scipost.org
https://scipost.org/SciPostPhysProc.8.169
https://doi.org/10.1103/PhysRevD.41.83
https://doi.org/10.1103/PhysRevD.43.261
https://doi.org/10.1016/0550-3213(93)90262-N
hep-ph/9208213
https://doi.org/10.1016/S0370-2693(02)01320-5
hep-ph/0201296
https://doi.org/10.1016/S0370-2693(02)01819-1
hep-ph/0204004
hep-ph/0204004
https://doi.org/10.1103/PhysRevLett.36.929
https://doi.org/10.1103/PhysRevLett.41.1689
https://doi.org/10.1103/PhysRevLett.67.2264
https://doi.org/10.1103/PhysRev.115.485

	Introduction
	Phenomenological approaches
	Sivers' approach
	Brodsky, Hwang, Schmidt's approach

	Symmetry-based approach
	QED vs QCD
	Outlook
	References

