About the Simple Rotation Method Used in Ref. [30]

The mathematical evaluations given in Ref. [30] is based on the simple rotation method. I have pointed out the weak point of such a method in my manuscript (see from line 8 on page 4 to the last line on the same page). The usefulness of the simple rotation method is usually restricted to some particular cases.

The system adopted in Ref. [30] is a simple case where the masses of the two oscillatory systems are identical to each other: $m_{1}=m_{2}=1$. For such a restricted case, the simple rotation method is applicable. However, for the case of $m_{1} \neq m_{2}$, the simple rotation method cannot be used in the diagonalization of the Hamiltonian of the system. Let us see for this, from a strict evaluation.

If we let $m_{1} \neq m_{2}$ from the system in Ref. [30], the associated Hamiltonian is given by

$$
\begin{equation*}
H=\frac{1}{2}\left(\frac{p_{1}^{2}}{m_{1}}+\frac{p_{2}^{2}}{m_{2}}\right)+\frac{1}{2}\left[m_{1} \omega_{1}^{2}(t) x_{1}^{2}+m_{2} \omega_{2}^{2}(t) x_{2}^{2}\right]-J(t) x_{1} x_{2} . \tag{1}
\end{equation*}
$$

We can transformation this Hamiltonian using the simple rotation method based on

$$
\begin{align*}
& \binom{y_{1}}{y_{2}}=\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{x_{1}}{x_{2}}, \tag{2}\\
& \binom{\tilde{p}_{1}}{\tilde{p}_{2}}=\left(\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\binom{p_{1}}{p_{2}}, \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{2} \tan ^{-1}\left(\frac{2 J}{m_{1} \omega_{1}^{2}-m_{2} \omega_{2}^{2}}\right) . \tag{4}
\end{equation*}
$$

Then, by this transformation, the Hamiltonian becomes

$$
\begin{equation*}
H=\frac{1}{2}\left(\frac{\tilde{p}_{1}^{2}}{M_{1}}+\frac{\tilde{p}_{2}^{2}}{M_{2}}\right)+\frac{1}{2}\left[\Omega_{1}^{2} y_{1}^{2}+\Omega_{2}^{2} y_{2}^{2}\right]+\beta \tilde{p}_{1} \tilde{p}_{2} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{M_{1}}=\frac{\cos ^{2} \alpha}{m_{1}}+\frac{\sin ^{2} \alpha}{m_{2}} \tag{6}
\end{equation*}
$$

$$
\begin{align*}
\frac{1}{M_{2}} & =\frac{\sin ^{2} \alpha}{m_{1}}+\frac{\cos ^{2} \alpha}{m_{2}}, \tag{7}\\
\Omega_{1}^{2} & =m_{1} \omega_{1}^{2} \cos ^{2} \alpha+m_{2} \omega_{2}^{2} \sin ^{2} \alpha+J \sin (2 \alpha), \tag{8}\\
\Omega_{2}^{2} & =m_{1} \omega_{1}^{2} \sin ^{2} \alpha+m_{2} \omega_{2}^{2} \cos ^{2} \alpha-J \sin (2 \alpha), \tag{9}\\
\beta & =\left(\frac{1}{m_{1}}-\frac{1}{m_{2}}\right) \cos \alpha \sin \alpha . \tag{10}
\end{align*}
$$

From Eq. (5), we see that the cross term $J(t) x_{1} x_{2}$ in the original expression of the Hamiltonian has been removed in the transformed Hamiltonian. However, a new cross term $\beta \tilde{p}_{1} \tilde{p}_{2}$ is appeared. Hence we cannot go further, because the Hamiltonian of the system cannot be diagonalized in this way. This is the weak point of the simple rotation method adopted in Ref. [30].

